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Abstract

In the present paper, an advanced geometrically nonlinear shell theory of doubly curved structural sandwich panels

with transversely compressible core is presented. The model is based on the adoption of the Kirchhoff theory for the

face sheets and a second/third order power series expansion for the core displacements. The theory accounts for dy-

namic effects as well as for initial geometric imperfections. In the v. K�aarm�aan sense, large displacement theory is em-

ployed with respect to the transverse direction while the displacement gradients with respect to the tangential directions

are assumed to be small. The equations of motion are derived by means of Hamilton�s principle and hold valid for all

types of elastic and elastic–plastic material models. The theory is illustrated by an analysis of the elastic buckling and

postbuckling behavior of flat and curved sandwich panels using an extended Galerkin scheme. Owing to the assumed

transverse flexibility of the core, both the global and the local (face wrinkling) instability modes can be addressed.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Structural sandwich panels are important elements in many fields of lightweight construction. The
classical area of sandwich construction is the field of aerospace engineering. Nevertheless, in the past de-

cades there are strong trends to use sandwich panels also in other technological fields such as in naval and

automotive applications or in civil engineering (see e.g. Mouritz et al., 2001). The typical structural

sandwich panel is a layered medium consisting of two high-density high-strength face sheets which are

adhesively bonded to a thick core made from a low-density material. In most cases, the core consists of a

foamed or two-dimensional cellular (honeycomb) material while anisotropic laminae are common as face

sheets. Within the principle of sandwich construction, the face sheets carry the tangential and bending loads

while the core keeps the face sheets at their desired distance and transmits the transverse normal and shear
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loads. Advantage of this principle of construction is that plates and shells with a rather high-bending
stiffness characteristics and an extremely low-specific weight are obtained.

Owing to the thick core consisting of a relatively soft material, the deformation and stability behavior of

sandwich structures are essentially different from the corresponding behavior of classical laminated panels

and monolayer structures. Especially in structural stability analyses, a different behavior of sandwich

structures has to be expected. The transverse flexibility of the core yields an additional instability mode,

where buckling of the face sheets into the core region occurs while the overall response of the entire panel

might remain stable. In addition to this face wrinkling instability, the standard global instabilities with

buckling of the entire panel might also be present.
To account for the specific deformation and buckling behavior, a number of specific plate and shell

models for sandwich structures have been developed. Two different types of models can be employed.

Nomenclature

Aij, Dij, Fij, Hij stiffness components

E, G, m isotropic elasticity constants

Kij, Lij, Mij, Nij stress resultants

li panel edge lengths

m, n, p, q number of sine half waves for the different stability modes

qi transverse pressure loads

Qij reduced stiffness matrix

ri radii of curvature
t layer thicknesses

T kinetic energy

ui, u
�
i shell mid-plane displacements and initial geometric imperfection

U strain energy

vi three-dimensional shell displacements

w, w
�

modal amplitude of transverse displacement and initial geometric imperfection

W work done by external loads

xi spatial vector/local Cartesian coordinate system
cij Green–Lagrange strain tensor
�ccij, gij, #ij, jij shell deformation components

dð. . .Þ variation of a quantity

�ij permutation symbol

k, l wavelength parameters

q mass density

sij second Piola–Kirchhoff stress tensor

Ui, Xi higher order displacement functions
ð. . .Þa average of quantities related to the top and bottom face sheet

ð. . .Þb quantities related to the bottom face sheet

ð. . .Þc quantities related to the core

ð. . .Þd half difference of quantities related to the top and bottom face sheet

ð. . .Þt quantities related to the top face sheet

ðc. . .. . .Þ prescribed quantity

ð €. . .. . .Þ second derivative with respect to time
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Effective single layer theories describe the entire sandwich structure in terms of displacement functions

related to one single reference surface. In effective multilayer theories, the individual layers are considered

separately. Compatibility is enforced by appropriate interface compatibility constraints.

The main advantage of effective single layer theories is that the total number of unknown field variables
and thus also the number of boundary conditions is reduced to a minimum. Recent work on effective single

layer sandwich models has been presented by Skvortsov and Bozhevolnaya (2001) as well as by Ferreira

et al. (2000). While the first study is restricted to linear elastic material behavior, the latter paper, which is

concerned with a finite element implementation, accounts for geometrical and material nonlinearities. An

innovative approach to an advanced effective single layer theory for plane sandwich plates has been pre-

sented by Barut et al. (2001). This study is based on weighted average displacement functions, where a

second and third order approximation is used for the transverse and tangential displacement fields, res-

pectively. The main advantage of this geometrically linear model is that it accounts for the transverse
compressibility of the core and satisfies all equilibrium conditions with respect to the transverse stress

components in an exact sense.

Disadvantage of effective single layer models is the loss in accuracy due to the simplified displacement

representation. Furthermore, it was shown in a finite element analysis by Hao et al. (2000) that effective

single layer theories might overestimate the global buckling load of structural sandwich panels. In addition,

effective single layer theories are inappropriate, if local or localized effects, such as the face wrinkling in-

stability mode, become significant. These problems are avoided by effective multilayer models where all

principal layers are treated separately. Early models of this type are the now classical sandwich membrane
models, which assume membrane theory for the face sheets, and pure transverse shear deformation was the

only type of deformation considered for the core (Allen, 1969). A number of more sophisticated multilayer

sandwich models have been developed during the past decade.

Frostig et al. (1992) provided a geometrically linear multilayer model for straight sandwich beams. This

model is based on Kirchhoff theory for the face sheets while no direct displacement assumption is made for

the core. By including the transverse shear stress of the core as an independent unknown field variable, a

mixed stress–displacement theory is formulated. This approach has been extended to singly curved sand-

wich beams by Bozhevolnaya and Frostig (1997) and to plane two-dimensional sandwich plates by Frostig
(1998). An alternative model for sandwich plates including the transverse normal flexibility of the core has

been presented by Lewi�nnski (1991). In his study, the thickness of the core is assumed to be uniform while

nonunique transverse displacements in the interior of the core are permitted. Recent theories accounting for

the transverse compressibility of the core have been provided by Dawe and Yuan (2001) as well as by Pai

and Palazotto (2001). Both of these studies are directed to the analysis of flat sandwich plates in the in-

finitesimal strain regime. The former study is based on a first and second order displacement expansion for

the transverse and tangential displacements, respectively, whereas the latter one uses a second and third

order approximation and also accounts for inertia effects. A general, geometrically nonlinear v. K�aarm�aan-
type theory for doubly curved sandwich shells with transversely incompressible core has been presented by

Hause et al. (1998) and Librescu et al. (1997). This theory accounts for initial geometric imperfections and

for inertia effects. Surveys on recent developments in the theory and modeling of structural sandwich panels

have been provided by Librescu and Hause (2000), Noor et al. (1996) and Vinson (2001).

The necessity to consider the transverse compressibility of the core stems from the fact that this mode of

deformation enables the occurrence of the local (face wrinkling) instability as it has already been noted by

Frostig et al. (1992) as well as by Starlinger and Rammerstorfer (1992). However, most studies in literature

directed to the face wrinkling instability are based on a simplified model where the face sheets are con-
sidered as flat panels on an elastic foundation with the material properties of the core (see e.g. Vinson, 1999;

Zenkert, 1997). On the other hand, these simplified models might yield inaccurate results, if the buckling

load of the global and the local instability are in the same order of magnitude. In this case, coupled buckling

modes with different buckling loads arise, where both the global and the face wrinkling instability are

J. Hohe, L. Librescu / International Journal of Solids and Structures 40 (2003) 1059–1088 1061



involved. Coupled buckling modes have been observed in a numerical study by Sokolinsky and Frostig

(2000) based on the sandwich beam model presented by Frostig et al. (1992). Independently, coupled local

and global buckling modes have been observed by da Silva and Santos (1998) as well as by Wadee and

Hunt (1998). Again, these studies are restricted to straight sandwich beams.
In order to evaluate the buckling strength and the load carrying capacity of sandwich constructions in a

reliable way, a comprehensive structural model that incorporates the transverse normal compressibility

effects as well as the geometrical nonlinearities should be developed. This issue motivates the development

of the present theory. In the present study, the sandwich shell theory presented by Hause et al. (1998)

is extended to sandwich shells with a transversely compressible core. The model adopts the standard

Kirchhoff–Love hypothesis for the face sheets, and second and third order expansions of the transverse and

tangential displacements for the core, respectively. As a result of the interface compatibility requirements, a

total number of 11 unknown displacement functions are finally involved in the general theory. The model
accounts for large transverse displacements, initial geometric imperfections, as well as for transverse inertia

effects.

The equations of motion and the corresponding boundary conditions for the new sandwich shell model

are derived by means of Hamilton�s principle. Hence, the derived equations hold irrespectively of the

constitutive behavior of the core and the face sheets. In the special case of elastic material behavior of all

principal layers, the number of unknown field variables can be reduced to seven. The model is applied to

static buckling and postbuckling analyses of simply supported flat and curved sandwich panels. An ana-

lytical solution is derived by means of an extended Galerkin scheme. The model is validated by a com-
parison with theoretical–experimental findings available in the literature. In several examples concerning

flat and curved panels, the potential of the new model towards a reliable determination of their load

carrying capacity are demonstrated.

2. General theory

2.1. Basic assumptions

Consider a structural sandwich panel according to Fig. 1. The entire structure consists of two thin face

sheets and a thick core. The two face sheets are assumed to be equal and uniform throughout the entire

sandwich structure. The face sheet thickness is denoted by tf while tc is the core thickness. In general, the

core thickness is much larger than the face sheet thickness, however, no specific limiting conditions will be
derived from this assumption. Thus, all subsequent considerations hold also for thin cores. Similar to the

Fig. 1. Structural sandwich panel.
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face sheets, the core is assumed to be uniform throughout the entire panel. The bond between the individual

layers is considered perfect in the present study.

For the analysis, a local Cartesian coordinate system xi is defined, where x1 and x2 are associated with the

global mid-surface of the panel, while x3 defines the downward normal direction. Thus, the global mid-
surface of the panel is employed as the shell reference surface. The sandwich panel is considered doubly

curved. The local radii of the curvature in the local x1–x3- and the x2–x3-planes are denoted by r1 and r2,
respectively. It is assumed that the radii of curvature are large compared to the core and face sheet

thicknesses i.e. r1, r2 � tc, tf . Thus the principles of shallow shell theory apply.

Since the tangential stiffness of structural sandwich panels is generally large, it is assumed that the

tangential deformation remains small. Contrary, large deflections might occur in the transverse direction.

During the deformation, the face sheets are assumed incompressible with respect to the transverse direction

while the core, due to its large thickness and weak material, is assumed compressible. Consistent with the
assumption of small tangential and large transverse deflections, only transverse inertia effects are consi-

dered, whereas all tangential and rotatory inertia effects are discarded.

No specific type of material behavior for either the core layer or the face sheets is specified at this point.

However, since within the principle of sandwich construction, the face sheets have to carry the tangential

loads and since their tangential stiffness is in general much larger than the tangential stiffness of the core, the

work done by the tangential stresses of the core will be neglected. This restriction is consistent with the

assumption of the weak core sandwich structures that is adopted for the present study.

2.2. Shell kinematics

As usual in the theory of thin walled structures, the displacement field of the structure is expressed as a

power series with respect to the transverse coordinate x3. In this context, the three principal layers are

treated separately. Due to the low thickness of the face sheets, the standard Kirchhoff assumptions are

applied to the face sheets. Thus, the displacement fields vti and vbi for the top and bottom face sheets in the

present problem are given by

vt1 ¼ ua1 þ ud1 � x3

�
þ tc þ tf

2

�
ua3;1 � x3

�
þ tc þ tf

2

�
ud3;1 ð1Þ

vt2 ¼ ua2 þ ud2 � x3

�
þ tc þ tf

2

�
ua3;2 � x3

�
þ tc þ tf

2

�
ud3;2 ð2Þ

vt3 ¼ ua3 þ ud3 ð3Þ
and

vb1 ¼ ua1 � ud1 � x3

�
� tc þ tf

2

�
ua3;1 þ x3

�
� tc þ tf

2

�
ud3;1 ð4Þ

vb2 ¼ ua2 � ud2 � x3

�
� tc þ tf

2

�
ua3;2 þ x3

�
� tc þ tf

2

�
ud3;2 ð5Þ

vb3 ¼ ua3 � ud3 ð6Þ
where the displacement functions

uai ¼
1

2
uti
�

þ ubi
�

ð7Þ
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udi ¼
1

2
uti
�

� ubi
�

ð8Þ

represent the average and the half difference of the face sheet mid-surface displacements uti and ubi , res-
pectively. It is implicitly understood, that the three-dimensional displacements vti and vbi depend on all three

components xi of the spatial position vector while the mid-surface displacement functions uta and uba (and

thus uaa and uda) depend solely on the spatial position xa within the shell reference surface. As usual, Latin
indices run over the range 1, 2, 3 while Greek indices run over the range 1, 2. In addition, all displacement

functions depend on time. For convenience, the dependences are not indicated explicitly throughout this

paper.

Owing to the large core thickness tc, a higher-order expansion has to be used for a proper representation

of the core displacement field. Therefore, the tangential displacements are expressed by a third order power

series expansion with respect to the thickness direction, while a second order expansion is used for the

transverse displacement. Barut et al. (2001) have introduced the naming convention f3; 2g-order theory for

this type of approach. Since the displacement field associated with the core has to satisfy the continuity
requirements at the face sheet interfaces, the displacement components of the core are obtained in the form

vc1 ¼ ua1 �
tf

2
ud3;1 �

2x3
tc

ud1 þ
tf

tc
x3ua3;1 þ

4ðx3Þ2

ðtcÞ2

 
� 1

!
Uc

1 þ 2
4ðx3Þ2

ðtcÞ2

 
� 1

!
x3X

c
1 ð9Þ

vc2 ¼ ua2 �
tf

2
ud3;2 �

2x3
tc

ud2 þ
tf

tc
x3ua3;2 þ

4ðx3Þ2

ðtcÞ2

 
� 1

!
Uc

2 þ 2
4ðx3Þ2

ðtcÞ2

 
� 1

!
x3X

c
2 ð10Þ

vc3 ¼ ua3 �
2x3
tc

ud3 þ
4ðx3Þ2

ðtcÞ2

 
� 1

!
Uc

3 ð11Þ

where Uc
i and Xc

a are additional displacement functions describing the warping of the core. Similar to the

previously introduced displacement functions uai and udi , the displacement functions Uc
i and Xc

a depend on

the spatial position xa within the reference surface as well as on time.
In Eq. (11), the second (ud3-dependent) term captures the transverse compressibility of the core. This term

is necessary to account for an independent transverse displacement of the top and bottom face sheets. The

last term provides the possibility of an additional transverse warping of the core. Since the power series

expansion (11) of the transverse core displacements is of the second order, a third order expansion of the

form (9) and (10) has to be used for the tangential displacements.

In addition to the load-dependent displacement functions uai , u
d
i , U

c
i and Xc

a in Eqs. (1)–(6) and (9)–(11), a

stress-free initial geometric imperfection

v
�t
3 ¼ u

�a
3 þ u

�d
3 ð12Þ

v
�b
3 ¼ u

�a
3 � u

�d
3 ð13Þ

v
�c
3 ¼ u

�a
3 �

2x3
tc

u
�d
3 ð14Þ

with respect to the transverse direction is introduced which remains constant during the deformation

process. In comparison to the load-dependent displacements, the geometric imperfections are assumed
small. Contrary to studies concerned with transversely incompressible panels and monolayer structures (see

e.g. Hause et al., 1998), in the present analysis the geometric imperfection of the core has to depend on the
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transverse coordinate x3 in order to ensure compatibility of the transverse displacements across the con-

tiguous surfaces between the compressible core and the face sheets. The total displacement field is given by

the sum of the load-dependent displacement field and the initial geometric imperfection. Due to the basic

assumption that only the transverse deflections might become large, only stability modes with respect to
these displacements might occur. Therefore, only imperfections with respect to the transverse direction are

considered.

The deformation of the sandwich shell will be expressed in terms of the Green–Lagrange strain tensor.

Due to the basic assumption that only the transverse load-dependent displacements according to Eqs. (3),

(6) and (11) might become large while the tangential deflections as well as the initial geometric imperfection

are assumed to remain small, only the nonlinear expressions with respect to transverse displacements are

kept in the strain-displacement relations while all other nonlinear terms are discarded (Librescu and Chang,

1993). Under the conditions of shallow shell theory, the components of the Green–Lagrange strain tensor
for the individual layers read

c11 ¼ v1;1 �
1

r1
v3 þ

1

2
ðv3;1Þ2 þ v3;1v

�
3;1 ð15Þ

c22 ¼ v2;2 �
1

r2
v3 þ

1

2
ðv3;2Þ2 þ v3;2v

�
3;2 ð16Þ

c33 ¼ v3;3 þ
1

2
ðv3;3Þ2 þ v3;3v

�
3;3 ð17Þ

c23 ¼
1

2
v2;3ð þ v3;2Þ þ

1

2
v3;2v3;3 þ

1

2
v3;2v

�
3;3 þ

1

2
v
�
3;2v3;3 ð18Þ

c13 ¼
1

2
v1;3ð þ v3;1Þ þ

1

2
v3;1v3;3 þ

1

2
v3;1v

�
3;3 þ

1

2
v
�
3;1v3;3 ð19Þ

c12 ¼
1

2
v1;2ð þ v2;1Þ þ

1

2
v3;1v3;2 þ

1

2
v3;1v

�
3;2 þ

1

2
v
�
3;1v3;2 ð20Þ

where the radii of curvature ra for the individual layers are approximated by the radii of the global mid-

surface. Eqs. (15)–(20) constitute a sandwich shell theory of the v. K�aarm�aan type for infinitesimal strains and

moderately large rotations.

Substituting the displacement components according to Eqs. (1)–(6) and (9)–(11) into the nonlinear

kinematic equations (15)–(20) yields the components of the Green–Lagrange strain tensor for the individual

layers of the sandwich panel. For the top and bottom face sheets, the relations

ctab ¼ �ccaab þ �ccdab þ x3

�
þ tc þ tf

2

�
ja

ab þ x3

�
þ tc þ tf

2

�
jd

ab ð21Þ

cbab ¼ �ccaab � �ccdab þ x3

�
þ tc þ tf

2

�
ja

ab � x3

�
þ tc þ tf

2

�
jd

ab ð22Þ

are obtained, where

�ccaab ¼ 1

2
�cctab

�
þ �ccbab

	
ð23Þ

�ccdab ¼ 1

2
�cctab

�
� �ccbab

	
ð24Þ
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are the average and the half difference of the membrane strains �cctab and �ccbab for the top and bottom face sheet

respectively. The quantities

ja
ab ¼ 1

2
jt

ab

�
þ jb

ab

	
ð25Þ

jd
ab ¼ 1

2
jt

ab

�
� jb

ab

	
ð26Þ

are the average and the half difference of the bending strains jt
ab and jb

ab for the two face sheets. Explicit

expressions for the face sheet membrane and bending strains in terms of the displacement functions uai and
udi are given in Appendix A. Owing to the adoption of the Kirchhoff–Love hypothesis, the transverse strain

components cti3 and cbi3 for the top and bottom face sheets vanish identically.

Due to the higher-order displacement representation for the core, more complex expressions for the
related components of the Green–Lagrange strain tensor are obtained. The transverse core strain com-

ponents take the form

cci3 ¼ �ccci3 þ x3jc
i3 þ ðx3Þ2

 
� ðtcÞ2

4

!
gi3 þ ðx3Þ2

 
� ðtcÞ2

4

!
x3#i3 ð27Þ

where �ccci3 and ji3 are the membrane and the bending strain, respectively, for the core whereas gc
i3 and #c

i3 are

higher-order strains resulting from the higher-order core displacements. Explicit expressions for the core

strain components are given in Appendix A. Owing to the adoption of the weak core concept, the tangential

strain components ccab for the core are not involved in the subsequent developments and therefore they are

not provided in explicit form.

In conjunction with a specific constitutive equation (which is not adopted so far), and with the equations

of motion to be determined in Section 2.3, it will be shown that the strain components �ccci3, ji3, gc
i3 and #c

a3 are

not independent from each other. In this case, four of the displacement functions of the core can be
eliminated from the system, resulting in the vanishing of the antisymmetric terms in Eq. (27).

2.3. Equations of motion and boundary conditions

The equations of motion have to be consistent with the assumptions made during the determination of

the kinematic relations (23), (24) and (27). Consistent equations of motion as well as the corresponding

boundary conditions can be obtained in a natural manner from Hamilton�s principleZ t1

t0
dUð � dW � dT Þdt ¼ 0 ð28Þ

where dU , dW and dT are the variations of the strain energy, of the work done by the external loads and of

the kinetic energy, respectively, in case of a virtual displacement duai , dudi , dUc
3 and dXc

a of the entire

sandwich structure during the time interval ½t0; t1�.
Under the basic assumption that the work done by the tangential stresses of the core is negligible, the

variation of the strain energy is expressed as

dU ¼
Z
A

Z �tc
2

�tf�tc
2

stabdctab dx3

 
þ
Z tc

2

�tc
2

sci3dcci3 dx3 þ
Z tc

2
þtf

tc
2

sbabdcbab dx3

!
dA ð29Þ

where sij are the components of the second Piola–Kirchhoff stress tensor, while A denotes the area of the

sandwich panel under consideration.
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With respect to the variation dW of the work done by the external loads, all tangential distributed loads

on the area A of the sandwich panel are neglected. Along the external boundary of the sandwich panel, it is

assumed that all prescribed tangential loads are transmitted by the face sheets while all prescribed trans-

verse loads will are carried by the core. A local coordinate system is introduced where xn and xt are the
normal and tangential directions on the external boundary, respectively. Thus, the variation of the work

done by the external loads is given by

dW ¼
Z
A

q̂qt3du
t
3

�
þ q̂qb3du

b
3

	
dAþ

Z
xt

Z �tc
2

�tf�tc
2

ŝstna�dv
t
a� dx3

 
þ
Z tc

2

�tc
2

ŝscn3dv
c
3 dx3 þ

Z tc
2
þtf

tc
2

ŝsbna�dv
b
a� dx3

!
dxt ð30Þ

where q̂qt3 and q̂qb3 are the distributed loads on the top and bottom face sheet respectively while ŝsij denote the
prescribed stresses along the external boundary and a� ¼ n, t.

If all tangential and rotatory inertia effects are discarded, the variation of the kinetic energy of the

sandwich panel is given byZ t1

t0
dT dt ¼

Z t1

t0

Z
A

Z �tc
2

�tf�tc
2

 
� qf€vvt3dv

t
3 dx3 þ

Z tc
2

�tc
2

� qc€vvc3dv
c
3 dx3 þ

Z tc
2
þtf

tc
2

� qf€vvb3dv
b
3 dx3

!
dAdt ð31Þ

where qc and qf are the mass densities of the core and of the face sheets, respectively, and €vv3 denotes the

transverse acceleration.

In order to determine the nonlinear equations of motion and the corresponding boundary conditions,

the variations ctab, cbab and cci3 are derived from relations (23)–(27) for the corresponding strain components

and substituted into Eq. (29). Subsequently, the stress resultants and stress couples

N t
ab;M

t
ab

n o
¼
Z �tc

2

�tf�tc
2

stab 1; x3

�

þ tc þ tf

2

��
dx3 ð32Þ

N b
ab;M

b
ab

n o
¼
Z tfþtc

2

tc
2

stab 1; x3

�

� tc þ tf

2

��
dx3 ð33Þ

N c
i3;M

c
i3; L

c
i3;K

c
i3

� �
¼
Z tc

2

�tc
2

sti3 1; x3; ðx3Þ2
 (

� ðtcÞ2

2

!
; ðx3Þ2
 

� ðtcÞ2

2

!
x3

)
dx3 ð34Þ

are introduced to replace the stress components sij in Eqs. (29)–(31). For convenience, alternative average
and difference stress resultants according to

N a
ab ¼ 1

2
N t

ab

�
þ Nb

ab

	
ð35Þ

Nd
ab ¼ 1

2
N t

ab

�
� Nb

ab

	
ð36Þ

Ma
ab ¼ 1

2
M t

ab

�
þMb

ab

	
ð37Þ

Md
ab ¼ 1

2
M t

ab

�
�Mb

ab

	
ð38Þ

are defined for the top and bottom face sheets.
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By substituting Eqs. (29)–(31) in conjunction with the two-dimensional stress measures Eqs. (32)–(38)

into Hamilton�s principle (28), collecting the coefficients of each of the virtual displacements, and inte-

grating by parts whenever necessary as to relieve the virtual displacements of any differentiation, a single

homogeneous linear equation for the virtual displacements duai , dudi , dUc
i and dXa

a is obtained. Since the
virtual displacements are independent and arbitrary, the corresponding coefficients in this homogeneous

equation must vanish independently. Thus, the nonlinear equations of motion

0 ¼ N a
11;1 þ N a

12;2 ð39Þ

0 ¼ N a
12;1 þ N a

22;2 ð40Þ

0 ¼ Nd
11;1 þ N d

12;2 þ
1

tc
N c

13 ð41Þ

0 ¼ Nd
12;1 þ N d

22;2 þ
1

tc
N c

23 ð42Þ

0 ¼ M c
13 ð43Þ

0 ¼ M c
23 ð44Þ

0 ¼ N c
13 þ

6

ðtcÞ2
Lc
13 ð45Þ

0 ¼ N c
23 þ

6

ðtcÞ2
Lc
23 ð46Þ

0 ¼ ua3;11

�
þ u

�a
3;11 þ

1

r1

�
N a

11 þ 2 ua3;12

�
þ u

�a
3;12

�
N a

12 þ ua3;22

�
þ u

�a
3;22 þ

1

r2

�
N a

22 þMa
11;11 þ 2Ma

12;12 þMa
22;22

þ ud3;11

�
þ u

�d
3;11

�
Nd

11 þ 2 ud3;12

�
þ u

�d
3;12

�
Nd

12 þ ud3;22

�
þ u

�d
3;22

�
Nd

22 þ
1

tc
tc þ tf

2

�
� ud3 � u

�d
3

�
N c

13;1

�
þ N c

23;2

	
� 2

tc
ud3;1

�
þ u

�d
3;1

�
N c

13 �
2

tc
ud3;2

�
þ u

�d
3;2

�
N c

23 þ q̂qa3 � mf

�
þ 1

2
mc

�
€uua3 þ

1

3
mc €UUc

3 ð47Þ

0 ¼ ua3;11

�
þ u

�a
3;11 þ

1

r1

�
N d

11 þ 2 ua3;12

�
þ u

�a
3;12

�
N d

12 þ ua3;22

�
þ u

�a
3;22 þ

1

r2

�
N d

22 þMd
11;11 þ 2Md

12;12 þMd
22;22

þ ud3;11

�
þ u

�d
3;11

�
N a

11 þ 2 ud3;12

�
þ u

�d
3;12

�
N a

12 þ ud3;22

�
þ u

�d
3;22

�
N a

22 þ
2

tc
tc

2

�
� ud3 � u

�d
3

�
N c

33

� 2

3tc
Uc

3 N c
13;1

�
þ N c

23;2

	
� 4

3tc
Uc

3;1N
c
13 �

4

3tc
Uc

3;2N
c
23 �

8

ðtcÞ3
Uc

3M
c
33 þ q̂qd3 � mf

�
þ 1

6
mc

�
€uud3 ð48Þ

0 ¼ � 8

ðtcÞ2
Uc

3N
c
33 þ

4

3tc
ud3;1

�
þ u

�d
3;1

�
N c

13 þ
4

3tc
ud3;2

�
þ u

�d
3;2

�
N c

23 �
2

3tc
tc

2

�
� ud3 � u

�d
3

�
N c

13;1

�
þ N c

23;2

	
� 8

ðtcÞ3
tc

2

�
� ud3 � u

�d
3

�
M c

33 �
32

ðtcÞ4
Uc

3L
c
33 þ

16

ðtcÞ4
Uc

3 Kc
13;1

�
þ Kc

23;2

	
þ 1

3
mc€uua3 �

4

15
mc €UUc

3 ð49Þ
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with

q̂qa3 ¼
1

2
q̂qt3
�

þ q̂qb3
	

ð50Þ

q̂qd3 ¼
1

2
q̂qt3
�

� q̂qb3
	

ð51Þ

are obtained, where mf and mc are the reduced mass densities for the face sheets and the core, respectively,

integrated with respect to the individual layer thickness. As it has to be expected, due to the basic as-

sumption of infinitesimal tangential strains, the first two equations in this system are identical to the

equilibrium conditions in membrane theory. The third and fourth equations are also a kind of membrane

equations which describe the coupling between the membrane stress resultants of the face sheets and the

transverse shear stresses of the core. The fifth to eighth equations constitute a result of the tangential
deformation components Uc

a and Xc
a of the core. Due to the involved kinematic assumptions, these equa-

tions are also linear. The last three equations are related to the transverse direction where large deflections

are involved. Hence, these equations are nonlinear. Since only the transverse inertia effects are considered,

Eqs. (47)–(49) are the only equations containing inertia terms.

The corresponding nonhomogeneous boundary conditions along the external boundaries of the sand-

wich panel read

uan ¼ ûuan or N a
nn ¼ bNN a

nn ð52Þ

uat ¼ ûuat or N a
nt ¼ bNN a

nt ð53Þ

udn ¼ ûudn or Nd
nn ¼ bNN d

nn ð54Þ

udt ¼ ûudt or Nd
nt ¼ bNN d

nt ð55Þ

ua3 ¼ ûua3 or ua3;n
�

þ u
�a
3;n

	
N a

nn þ ua3;t
�

þ u
�a
3;t

	
N a

nt þ ud3;n
�

þ u
�d
3;n

	
Nd

nn þ ud3;t
�

þ u
�d
3;t

	
Nd

nt þMa
nn;n þ 2Ma

nt;t

þ 1

tc
tc þ tf

2

�
� ud3 � u

�d
3

�
N c

n3 ¼ bMM a
nt;t þ

1

2
bNN c
n3 ð56Þ

ud3 ¼ ûud3 or ua3;n
�

þ u
�a
3;n

	
Nd

nn þ ua3;t
�

þ u
�a
3;t

	
N d

nt þ ud3;n
�

þ u
�d
3;n

	
N a

nn þ ud3;t
�

þ u
�d
3;t

	
N a

nt þMd
nn;n þ 2Md

nt;t

� 2

3tc
Uc

3N
c
n3 ¼ bMM d

nt;t �
1

tc
bMM c

n3 ð57Þ

Uc
3 ¼ ÛUc

3 or
2

tc
tc

2

�
� ud3 � u

�d
3

�
N c

n3 �
48

ðtcÞ4
Uc

3K
c
n3 ¼ bNN c

n3 ð58Þ

ua3;n ¼ ûua3;n or Ma
nn ¼ bMM a

nn ð59Þ

ud3;n ¼ ûud3;n or Md
nn ¼ bMM d

nn: ð60Þ

Thus, along each edge of the panel, either the tangential displacements or the corresponding stress re-
sultant has to be specified for both face sheets in terms of the average and the difference according to Eqs.

(7) and (8) or (35) and (36). In addition, either the rotations with respect to the longitudinal direction of
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each edge or the corresponding stress couples have to be prescribed. With respect to the transverse di-

rection, the displacement functions ua3, u
d
3 and Uc

3 can be specified along the panel edges. In the case of

nonvanishing transverse edge displacements, nonlinear boundary conditions apply due to the assumption

of large transverse deflections. Since a total of nine independent boundary conditions have to be satisfied
along each edge of the panel, the governing system is of the 18th order.

Note that so far no specific type of material behavior has been considered. Thus, the nonlinear equations

of motion (39)–(49) as well as the corresponding boundary conditions (52)–(60) hold irrespectively of the

constitutive equations for the core and the face sheets as long as the basic assumptions from Section 2.1 are

satisfied.

2.4. Compatibility equation

The first two equilibrium conditions (39) and (40) are satisfied identically by introduction of an Airy

stress function U for the average tangential stress resultants N a
ab of the top and bottom face sheets. The

stress resultants are obtained as the second partial derivatives

N a
ab ¼ �ac�bdU;cd ð61Þ

of the Airy function, where �ab denotes the permutation symbol.

Introduction of the Airy stress function implies that Eqs. (39) and (40) are eliminated from the system.

On the other hand, with the Airy function U, an additional field quantity has been introduced. Therefore,

an additional equation is required. This equation can be obtained in form of a compatibility condition for

the average tangential membrane strain components �ccaab similar to the compatibility condition for the strain

components in three-dimensional continuum mechanics. For the present sandwich shell theory, the com-
patibility equation takes the form:

�cca11;22 � 2�cca12;12 þ �cca22;11 ¼ � 1

r1
ua3;22 �

1

r2
ua3;11 þ ðua3;12Þ

2 þ 2ua3;12u
�a
3;12 � ua3;11u

a
3;22 � u

�a
3;11u

a
3;22

� ua3;11u
�a
3;22 þ ðud3;12Þ

2 þ 2ud3;12u
�d
3;12 � ud3;11u

d
3;22 � u

�d
3;11u

d
3;22 � ud3;11u

�d
3;22: ð62Þ

Introduction of the Airy stress function U according to Eq. (61) and replacement of the two––now ob-

solete––equilibrium conditions (39) and (40) by the compatibility equation (62), implies a reduction of the

governing system in the number of equations by one. Similar as in the standard v. K�aarm�aan theory for

shallow monolayer shells, the overall problem can be regarded as an tangential and a bending problem,
which is coupled via the transverse displacements and via the curvature.

3. Special case: orthotropic elasticity

In Section 2, no specific type of material behavior has been considered. Thus, the nonlinear sandwich

shell theory defined by the kinematic equations (1)–(6) and (9)–(11), the equations of motion (41)–(49), the

compatibility equation (62) and the corresponding boundary conditions (52)–(60) is valid for all types of

material behavior. If the theory is specialized to linear elastic behavior, the governing system of equations

can be reduced in the number of unknown displacement functions.

The face sheets are subsequently assumed to consist of orthotropic laminae. If the axes of orthotropy

coincide with the axes xi of the coordinate system and if the lay-up of the face sheets is symmetric with
respect to their individual mid-surfaces, the average face sheet stress resultants N a

ab and Ma
ab are related

to the average mid-surface strain and curvature components �ccaab and ja
ab of the face sheets by
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N a
11

N a
22

N a
12

0@ 1A ¼
Af
11 Af

12 0

Af
22 0

ðSym:Þ Af
66

0@ 1A �cca11
�cca22
2�cca12

0B@
1CA ð63Þ

and

Ma
11

Ma
22

Ma
12

0@ 1A ¼
Df

11 Df
12 0

Df
22 0

ðSym:Þ Df
66

0@ 1A ja
11

ja
22

2ja
12

0@ 1A: ð64Þ

Similar relations with the same stiffness coefficients Af
ij and Df

ij relate the half differences N
d
ab and Md

ab of the

face sheet stress resultants to the half differences �ccdab and jd
ab of the face sheet mid-surface strains and

curvature changes. The stiffness components are defined in the usual manner by

Af
ij;D

f
ij

n o
¼
Z �tc

2

�tf�tc
2

Qf
ij

 
�
Qf

i3Q
f
j3

Qf
33

!
1; x3

�(
þ tc þ tf

2

�2
)
dx3 ð65Þ

where Qf
ij are the components of the reduced stiffness matrix for the face sheets. Explicit expressions for the

face sheet strain components �ccaab, �cc
d
ab, j

a
ab and jd

ab in terms of the displacement functions uai , u
d
i and the initial

geometric imperfections are provided in Appendix A.

The core is also assumed to be linearly elastic and orthotropic. Again, the axes of orthotropy are as-

sumed to coincide with the coordinate axes xi. In this case, the stress resultants N c
i3, M

c
i3, L

c
i3 and Kc

i3 are

related to the core deformation components �ccci3, jc
i3, gc

i3 and #c
i3 according to Appendix A by the relations

N c
33

N c
23

N c
13

0@ 1A ¼

Ac
33�cc

c
33 þ Dc

33 �
ðtcÞ2
4
Ac
33

� 	
gc
33

Ac
442�cc

c
23 þ Dc

44 �
ðtcÞ2
4
Ac
44

� 	
2gc

23

Ac
552�cc

c
13 þ Dc

55 �
ðtcÞ2
4
Ac
55

� 	
2gc

13

0BBB@
1CCCA ð66Þ

M c
33

M c
23

M c
13

0@ 1A ¼

Dc
33j

c
33

Dc
442j

c
23 þ F c

44 þ
ðtcÞ2
4
Dc

44 �
ðtcÞ4
16

Ac
44

� 	
2#c

23

Dc
552j

c
13 þ F c

55 þ
ðtcÞ2
4
Dc

55 �
ðtcÞ4
16

Ac
55

� 	
2#c

13

0BB@
1CCA ð67Þ

Lc
33

Lc
23

Lc
13

0@ 1A ¼

Dc
33 �

ðtcÞ2
4
Ac
33

� 	
�ccc33 þ F c

33g
c
33

Dc
44 �

ðtcÞ2
4
Ac
44

� 	
2�ccc23 þ F c

442g
c
23

Dc
55 �

ðtcÞ2
4
Ac
55

� 	
2�ccc13 þ F c

552g
c
13

0BBB@
1CCCA ð68Þ

Kc
23

Kc
13

� �
¼

F c
44 þ

ðtcÞ2
4
Dc

44 �
ðtcÞ4
16

Ac
44

� 	
2jc

23 þ H c
442#

c
23

F c
55 þ

ðtcÞ2
4
Dc

55 �
ðtcÞ4
16

Ac
55

� 	
2jc

13 þ H c
552#

c
13

0@ 1A ð69Þ

which are obtained by substituting the components cci3 of the Green–Lagrange strain tensor into the three-

dimensional constitutive equation for orthotropic elasticity and a subsequent substitution of the obtained

transverse components sci3 of the second Piola–Kirchhoff stress tensor into relation (34) for the core stress
resultants. The core stiffness components are given by
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fAc
ðiiÞ;D

c
ðiiÞ; F

c
ðiiÞ;H

c
ðiiÞg ¼

Z tc
2

�tc
2

Qc
ðiiÞ 1; ðx3Þ2; ðx3Þ2

 8<: � ðtcÞ2

4

!2

; ðx3Þ2
 

� ðtcÞ2

4

!2

ðx3Þ2
9=;dx3 i ¼ 3; 4; 5

ð70Þ

where no summation with respect to repeated indices in parentheses has to be performed.

The constitutive relations (66)–(69) can be employed to eliminate four unknown displacement functions

from the system: Substituting the core deformation components �ccci3, jc
i3, gc

i3 and #c
i3 according to Appendix

A into the constitutive equations (66)–(68) yields closed-form expressions for the core stress resultants N c
i3,

M c
i3 and Lc

i3. Substituting the result into the fifth to eighth equation of motion (43)–(46) yields four algebraic
equations for the tangential core displacement functions Uc

a and Xc
a. In conjunction with the assumption

that the material behavior is uniform with respect to the core thickness so that the reduced stiffness

components Qc
ðiiÞ do not depend on the transverse direction x3, the result reads

Uc
a ¼

tc

4
ud3;a �

1

2
ud3u

d
3;a �

1

2
ud3u

�d
3;a �

1

2
u
�d
3u

d
3;a � Uc

3u
c
3;a � Uc

3u
� c
3;a þ

2

5
Uc

3U
c
3;a ð71Þ

Xc
a ¼ � tc

6
U3;a þ

2

3
U3ud3;a þ

2

3
U3u

�d
3;a þ

1

3
Uc

3;au
d
3 þ

1

3
Uc

3;au
�d
3 : ð72Þ

This result can be regarded as a specific simplifying kinematic assumption for the displacement functions

Uc
1, Uc

2, Xc
1 and Xc

2. Hence, the nonlinear 11-parameter shell theory defined by the kinematic equations (1)–
(6) and (9)–(11), the equations of motion (41)–(49), the compatibility equation (62) and the corresponding

boundary conditions (52)–(60) with the unknown displacement functions uai , u
d
i , Uc

i and Xc
a can be reduced

to a seven-parameter theory defined by the equations of motion (39)–(42) and (47)–(49) with the unknown

displacement functions uai , u
d
i and Uc

3. The reduction in the number of equations and unknown variables is

caused by equilibrium requirements with respect to the stresses in the core of the sandwich panel which do

not permit arbitrary displacements Uc
a and Xc

a. Eqs. (71) and (72) in the present form hold only for the case

of orthotropic elasticity where the axes of orthotropy coincide with the axes xi of the coordinate system and

where the material behavior of the core is uniform with respect to the transverse direction x3. Nevertheless,
similar relations can be derived for other types of material behavior.

4. Analytical solution for simply supported sandwich panels

4.1. Transverse displacement functions

The sandwich shell theory derived in Sections 2 and 3 will be applied to buckling and postbuckling

analyses of a simply supported rectangular sandwich panel with edge lengths l1 and l2 in the x1- and x2-
directions, respectively. Along the panel edges, the transverse displacements ua3 and ud3 as well as the stress
couples Ma

nn and Md
nn are assumed to vanish. Furthermore, the tangential shear stress resultants N a

nt and N d
nt

as well as the normal stress resultant Nd
nn along the edges vanish. With respect to normal stress resultants N a

nn

and the corresponding displacement function uan two different cases are considered: For immovable edges,

the displacement function uan has to vanish whereas the stress resultant N a
nn vanishes in the case of movable

edges. The displacement function Uc
3 is assumed to vanish throughout the area of the sandwich panel. Thus,

no warping of the core in the transverse direction is considered while warping of the core is permitted with

respect to the tangential directions.

A suitable representation for the transverse displacement functions in buckling and postbuckling
problems is given by
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ua3 ¼ wa
mn sinðk

a
mx1Þ sinðla

nx2Þ; ka
m ¼ mp

l1
; la

n ¼
np
l2

ð73Þ

ud3 ¼ wd
pq sinðk

d
px1Þ sinðld

qx2Þ; kd
p ¼

pp
l1

; ld
q ¼

qp
l2

ð74Þ

where m, n, p and q are the number of sine half-waves in the corresponding directions whereas wa
mn and wd

pq

denote the modal amplitudes of the corresponding transverse displacement function. The amplitudes re-

main unknown at this stage. The numbers of half-waves in the different parts of the solution are inde-

pendent from each other.

For the initial geometric imperfection, a similar assumption

u
�a
3 ¼ w

� a
mn sinðka

mx1Þ sinðla
nx2Þ ð75Þ

u
�d
3 ¼ w

� d
pq sinðkd

px1Þ sinðld
qx2Þ ð76Þ

with the same numbers m, n, p and q is made. On the other hand, the amplitudes w
� a
mn and w

� d
pq of the initial

geometric imperfection are independent from their load-dependent counterparts. As it was shown by Seide

(1974), the initial geometric imperfection represented in a similar form as the buckling mode provides the

most critical postbuckling conditions. Caused by the assumption of infinitesimal imperfections, the pre-

scribed amplitudes of the imperfection have to be small compared to the overall dimensions of the sandwich

panel under consideration.

4.2. Consistent solution for the tangential displacements

Similar to the procedure presented in the paper by Hause et al. (1998), a solution for the tangential

displacement functions uaa and uda can be derived, which is consistent with the assumptions (73)–(76) for the

transverse displacements and the initial geometric imperfection.
Substituting the transverse displacement functions ua3 and ud3 as well as the initial geometric imperfections

w
� a
mn and w

� d
pq according to Eqs. (73)–(76) into the compatibility condition (62) yields a partial differential

equation for the average membrane strains �ccaab of the face sheets. Substituting the average membrane strain

components in this equation with the inverted form of the material equations (63), and expressing the

tangential stress resultants N a
ab in terms of the Airy stress function U using Eq. (61) results in an inho-

mogeneous partial differential equation for the Airy stress function.

The general solution of this differential equation reads

U ¼ 1

2
�NN a
11ðx2Þ

2 þ 1

2
�NN a
22ðx1Þ

2 þ ðwa
mnÞ

2
�

þ 2wa
mnw

� a
mn

	
C1 cosð2ka

mx1Þ þ ðwa
mnÞ

2
�

þ 2wa
mnw

� a
mn

	
C2 cosð2la

nx2Þ

þ wa
mnC3 sinðka

mx1Þ sinðla
nx2Þ þ ðwd

pqÞ
2

�
þ 2wd

pqw
� d
pq

	
C4 cosð2kd

px1Þ þ ðwd
pqÞ

2
�

þ 2wd
pqw

� d
pq

	
C5 cosð2ld

qx2Þ

ð77Þ

where �NN a
11 and �NN a

22 are the averages of the prescribed edge loads bNN a
11 and bNN a

22 at x1 ¼ constant and

x2 ¼ constant, respectively. The integration constants C1–C5 are obtained by substituting the general so-

lution (77) into the differential equation and comparing the coefficients. Explicit expressions are given in

Appendix B.

With the general solution (77) for the Airy stress function U, the average tangential stress resultants N a
ab

are obtained from Eq. (61). These expressions are substituted into the first two relations of the constitutive
equation (63). Replacing the average membrane strain components �ccaab with the explicit expressions given in

Appendix A together with the representations (73)–(76) for the transverse displacements ua3, u
d
3, u

�a
3 and u

�d
3
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yields a system of two coupled inhomogeneous partial differential equations for the average tangential face

sheet displacements ua1 and ua2. The system is solved by

ua1 ¼ ðwa
mnÞ

2
�

þ 2wa
mnw

� a
mn

	
D1x1 þ ðwa

mnÞ
2

�
þ 2wa

mnw
� a
mn

	
D2 sinð2ka

mx1Þ

þ ðwa
mnÞ

2
�

þ 2wa
mnw

� a
mn

	
D3 sinð2ka

mx1Þ cosð2la
nx2Þ þ ðwd

pqÞ
2

�
þ 2wd

pqw
� d
pq

	
D4x1

þ ðwd
pqÞ

2
�

þ 2wd
pqw

� d
pq

	
D5 sinð2kd

px1Þ þ ðwd
pqÞ

2
�

þ 2wd
pqw

� d
pq

	
D6 sinð2kd

px1Þ cosð2ld
qx2Þ

þ wa
mnD7 cosðka

mx1Þ sinðla
nx2Þ þ D8

�NN11x1 þ D9
�NN22x1 ð78Þ

ua2 ¼ ðwa
mnÞ

2
�

þ 2wa
mnw

� a
mn

	
E1x2 þ ðwa

mnÞ
2

�
þ 2wa

mnw
� a
mn

	
E2 sinð2la

nx2Þ

þ ðwa
mnÞ

2
�

þ 2wa
mnw

� a
mn

	
E3 cosð2ka

mx1Þ sinð2la
nx2Þ þ ðwd

pqÞ
2

�
þ 2wd

pqw
� d
pq

	
E4x2

þ ðwd
pqÞ

2
�

þ 2wd
pqw

� d
pq

	
E5 sinð2ld

qx2Þ þ ðwd
pqÞ

2
�

þ 2wd
pqw

� d
pq

	
E6 cosð2kd

px1Þ sinð2ld
qx2Þ

þ wa
mnE7 sinðka

mx1Þ cosðla
nx2Þ þ E8

�NN11x2 þ E9
�NN22x2 ð79Þ

where again the integration constants D1–D9 and E1–E9 are obtained by substituting the general solution

(78) and (79) into the differential equations and comparing the coefficients. Explicit expressions for the

integration constants are presented in Appendix B.

A consistent solution for the displacements ud1 and ud2 can be derived from the third and fourth equi-

librium conditions (41) and (42). If the tangential stress resultants Nd
ab and the core stress resultants N c

a3 in

these relations are substituted by the respective constitutive equations in conjunction with the deformation

components according to Appendix A, a system of two coupled inhomogeneous differential equations is

obtained. The general solution of this system is given by

ud1 ¼ wa
mnA1 cosðka

mx1Þ sinðla
nx2Þ þ wd

pqA2 cosðkd
px1Þ sinðld

qx2Þ

þ wa
mnw

d
pq

�
þ w

� a
mnwd

pq þ wa
mnw

� d
pq

	
A3 cosðka

mx1Þ sinðla
nx2Þ sinðk

d
px1Þ sinðld

qx2Þ

þ wa
mnw

d
pq

�
þ w

� a
mnwd

pq þ wa
mnw

� d
pq

	
A4 sinðka

mx1Þ cosðla
nx2Þ cosðk

d
px1Þ cosðld

qx2Þ

þ wa
mnw

d
pq

�
þ w

� a
mnwd

pq þ wa
mnw

� d
pq

	
A5 sinðka

mx1Þ sinðla
nx2Þ cosðk

d
px1Þ sinðld

qx2Þ

þ wa
mnw

d
pq

�
þ w

� a
mnwd

pq þ wa
mnw

� d
pq

	
A6 cosðka

mx1Þ cosðla
nx2Þ sinðk

d
px1Þ cosðld

qx2Þ ð80Þ

ud2 ¼ wa
mnB1 sinðka

mx1Þ cosðla
nx2Þ þ wd

pqB2 sinðkd
px1Þ cosðld

qx2Þ

þ wa
mnw

d
pq

�
þ w

� a
mnwd

pq þ wa
mnw

� d
pq

	
B3 sinðka

mx1Þ cosðla
nx2Þ sinðk

d
px1Þ sinðld

qx2Þ

þ wa
mnw

d
pq

�
þ w

� a
mnwd

pq þ wa
mnw

� d
pq

	
B4 cosðka

mx1Þ sinðla
nx2Þ cosðk

d
px1Þ cosðld

qx2Þ

þ wa
mnw

d
pq

�
þ w

� a
mnwd

pq þ wa
mnw

� d
pq

	
B5 sinðka

mx1Þ sinðla
nx2Þ sinðk

d
px1Þ cosðld

qx2Þ

þ wa
mnw

d
pq

�
þ w

� a
mnwd

pq þ wa
mnw

� d
pq

	
B6 cosðka

mx1Þ cosðla
nx2Þ cosðk

d
px1Þ sinðld

qx2Þ ð81Þ

where the integration constants A1 to A6 and B1 to B6 are given in Appendix B.
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With Eqs. (73)–(81), a consistent solution for the displacements uai and udi of the simply supported

rectangular sandwich panels under consideration is obtained. The solution satisfies all boundary conditions

of the simply supported panel with respect to the transverse displacements and with respect to the stress

couples Ma
nn and Md

nn. The boundary conditions with respect to the tangential displacements udn and the
tangential stress resultants N a

nn, N
a
nt, N

d
nn and Nd

nt are satisfied in an integral average sense along the respective

panel edges. Regarding the equations of motion, the first eight equations (39)–(46) are satisfied identically

since they have been employed for the elimination of the tangential displacement functions Uc
a and Xc

a

according to Eqs. (71) and (72) as well as for the determination of the consistent expressions (78)–(81) for

the face sheet tangential displacements uaa and uda . The only quantities in the solution (73)–(81) for the

displacements uai and udi that remain unknown at this stage are the modal amplitudes wa
mn and wd

pq of the

transverse displacements which have to be determined such that the last three equations of motion (47)–(49)

are satisfied at least in an approximate sense.

4.3. Amplitudes of the transverse displacement functions

The unknown transverse displacement amplitudes are determined by means of an extended Galerkin

scheme (Hause et al., 1998; Palazotto and Linnemann, 1991). Therefore, the solution (73)–(81) for the
displacements of the panel together with the shell strain measures according to Appendix A and the

constitutive equations (63)–(70) are substituted into the variational equation (28). Since the amplitudes of

the transverse displacements are the only unknown quantities, the variations of the displacements and shell

deformation components are expressed in terms of the variations dwa
mn and dwd

pq of the unknown modal

amplitudes. Note that due to the vanishing transverse warping of the core the corresponding variation

vanishes too (duU
3 
 0). Hence, the eleventh equation of motion (49) becomes immaterial.

Neither the amplitudes of the transverse displacements nor their variations depend on the spatial po-

sition. Thus, the integral in Hamilton�s principle can be evaluated. As the result, a single homogeneous
equation is obtained, which depends linearly on the variations dwa

mn and dwd
pq of the unknown modal

amplitudes. Since the variations of the transverse displacement amplitudes are arbitrary and independent,

the corresponding coefficients must vanish independently. Thus, a system of two independent cubic

equations for the two unknown displacement amplitudes wa
mn and wd

pq is obtained. In addition, this system

depends on the prescribed average tangential edge loads �NN a
11 and

�NN a
22, on the prescribed transverse normal

loads q̂qa3 and q̂qd3 as well as on on the initial geometric imperfection amplitudes w
� a
mn and w

� d
pq. Since the

equations are rather lengthy, they are not presented in explicit form. The system is solved numerically by

means of Newton�s method.

5. Numerical examples

5.1. Flat panels under uniaxial in-plane compression

As a first example for the application of the methods derived in Sections 2–4, the buckling and post-

buckling behavior of a flat sandwich panel under compressive uniaxial in-plane edge loads is considered.

The panel under consideration has a square geometry with l1 ¼ l2 ¼ 500 mm and r1 ¼ r2 ¼ 1. The face

sheets are assumed to consist of aluminum with a Young�s modulus of Ef ¼ 70 GPa, a Poisson�s ratio of

mf ¼ 0:3 and a thickness of tf ¼ 1 mm. The core material is also isotropic with transverse Young�s and shear

moduli of Ec ¼ 0:7 GPa and Gc ¼ 0:269 GPa, respectively, which is 1% of the corresponding moduli of the

face sheets. Unless otherwise stated, a core thickness of tc ¼ 20 mm is assumed. The sandwich panel is
loaded in a pure uniaxial in-plane mode in the x1-direction with �NN a

11 6¼ 0 while the second average in-plane
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stress resultant �NN a
22 vanishes. The edges parallel to the x1-axis are movable within the x1–x2-plane. No

transverse loads q̂qa3 and q̂qd3 are considered in the first example.

As a validation example, the buckling loads for the global instability as well as for the local, face

wrinkling instability are determined as functions of the core thickness tc. The results for both buckling

modes are presented in Fig. 2. In this figure as well as in all subsequent figures, the standard sign convention

is adopted that tensile loads are positive whereas compressive loads are negative. In order to obtain un-
perturbed results for a separated analysis of both cases, pure local and global buckling modes have been

considered. Hence, in the analysis of the global buckling load, the amplitude wd
pq of the face wrinkling

instability is set to wd
pq 
 0. Vice-versa, the amplitude wa

mn is set to wa
mn 
 0 in the analysis of the face

wrinkling load. Needless to say, in the analysis of the buckling bifurcation loads no initial geometric im-

perfections are applied. For sake of comparison, the global and local buckling loads obtained by the ap-

proximate formulae given by Vinson (1999) are added as dotted lines. These approximate formulae are well

verified by experimental results so that the numerical results obtained thereby can also be used for a vali-

dation of the present model.
Concerning the global buckling load, a progressive increase of the compressive load level ��NN a

11 with an

increase in the core thickness tc is observed. A rather good agreement between the results based on the

present model and the ones by the approximate analysis using Vinson�s (1999) formulae is observed for

small to moderate core thicknesses tc. A deviation develops for large core thicknesses. In this range, the

approximation might be out of range of its validity. It should be noted that for a core thickness tc > 50 mm,

the ratio of the core thickness tc to the in-plane dimension l1 in the present example exceeds 1=10 and thus

might be out of the typical range for standard technological applications. The global buckling load is in all

cases related to the buckling mode with m ¼ n ¼ 1 since this mode yields the lowest overall strain energy.
In contrast to the global buckling load, the face wrinkling load level ��NN a

11 decreases with increasing core

thickness tc. Furthermore, the buckling mode in this case depends on the core thickness. The number p of

sine half-wave within the loading direction decreases with increasing core thickness due to the decreasing

transverse normal stiffness of the core. On the other hand, a single sine half-wave q ¼ 1 with respect to the

x2-direction normal to the external load �NN a
11 belongs to the lowest buckling mode. In all cases, the lowest

compressive face wrinkling load for the respective core thickness is found to be in good agreement with the

face wrinkling load obtained by Vinson�s (1999) approximate formula. It should be noted that this ap-

proximate formula provides a clear bound on the compressive face wrinkling load levels obtained by the
model used in the present study.

In Fig. 3, the load–deflection behavior in the postbuckling range of the flat sandwich panel is investi-

gated. A constant core thickness of tc ¼ 20 mm is assumed. Again, pure buckling modes are considered

where either the global deflection amplitude wa
mn or the local deflection amplitude wd

pq is considered to have a

nonvanishing value. As in the previous investigation, the global buckling mode is given by m ¼ n ¼ 1 while

a face wrinkling mode with p ¼ 53 and q ¼ 1 proves to correspond to the lowest buckling load for the face

Fig. 2. Flat sandwich panel––buckling load.
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wrinkling instability. In both cases, different values for the respective geometric imperfection are consi-

dered.

As it has to be expected, a buckling bifurcation is observed in both analyses only in the case of a

geometrically perfect sandwich panel. The presence of an initial geometric imperfection results in a regu-

larization of the load–deflection behavior so that no buckling in the Eulerian sense is present in these cases.

It should be remarked that rather small initial geometric imperfections such as the wrinkling imperfection

amplitude of w
� d
pq ¼ 0:1 mm, have a significant effect on the load–deflection behavior especially in the vi-

cinity of the respective bifurcation load level. If the bifurcation load is exceeded, a further increase in the
load carrying capacity of the sandwich panel with both, an increasing amplitude wa

mn of the global buckling

mode, as well as an increasing amplitude wd
pq of the face wrinkling mode is observed.

5.2. Cylindrical shell under axial compression

As a second example including curvature and interaction effects, the axial compression of a cylindrical

sandwich shell with a rectangular projection on a plane is considered. The geometry is similar to that in the

first example, except that a finite radius r2 ¼ 2000 mm within the x2–x3-plane is considered. Again the in-

plane dimensions of the panel are l1 ¼ l2 ¼ 500 mm so that r2=l2 ¼ 4 and r1=l1 ¼ 1. The core and face

sheet thicknesses are tc ¼ 20 mm and tf ¼ 1 mm, respectively. The material properties of the core and face
sheet material are given by Gc ¼ 0:269 GPa, Ec ¼ 0:7 GPa, Ef ¼ 70 GPa and mf ¼ 0:3, respectively. The
panel is loaded in a pure axial compression mode with �NN a

11 6¼ 0 while all transverse distributed loads q̂qa3 and
q̂qr3 are assumed to be zero. In contrast to the example regarding the flat sandwich panel, the edges parallel to

the external loading direction (x1-direction) are considered to be immovable with respect to the x2-direction.
Thus, a nonvanishing tangential stress resultant �NN a

22 will in general be present in this example. In contrast to

the previous analyses, in the remainder of this paper the global buckling mode and the face wrinkling

instability will be considered in a coupled form.

In Fig. 4, the load–deflection behavior of the cylindrical shell is presented at different levels of the initial
geometric imperfection amplitude w

� a
mn. A buckling mode with m ¼ n ¼ q ¼ 1 and p ¼ 53 is considered. This

mode corresponds to the lowest strain energy level in the postbuckling range. In Fig. 4, the local imper-

fection amplitude w
� d
pq is assumed to be zero. In contrast to the case of the flat sandwich panel, due to the

panel curvature, a bifurcation in the global load–deflection diagram is obtained for a nonzero initial

geometric imperfection with w
� a

mn � 4:74 mm. If for this geometric case the compressive load ��NN a
11 is further

increased, an unsymmetrical load–deflection behavior is observed. For slightly larger initial geometric

imperfections than the value required for the occurrence of the bifurcation, a slight snap-through jump is

observed due to the asymmetry of the load–deflection behavior in the postbuckling range. Again, strong
effects of the initial geometric imperfection can be observed.

Fig. 3. Flat sandwich panel––postbuckling behavior.

J. Hohe, L. Librescu / International Journal of Solids and Structures 40 (2003) 1059–1088 1077



In the case of a global imperfection with w
� a
mn ¼ 4:74 mm, no face wrinkling instability is experienced,

when the bifurcation load is reached. If the compressive load level is further increased, a second bifurcation

occurs when the face wrinkling buckling load is reached. From this load level onwards, a nonvanishing

local displacement wd
pq 6¼ 0 is present (see Fig. 4b). The occurrence of this second bifurcation and the

subsequent development of the local displacement wd
pq essentially depends on the level of the global geo-

metric imperfection w
� a
mn. Since this imperfection has a strong effect on the global load–deflection behavior

(see Fig. 4a), it strongly affects the overall load level �NN a
11 and thus also the occurrence and intensity of the

local face wrinkling instability.

In Fig. 4c, the dependence of the induced stress resultant �NN a
22 normal to the loading (x1-) direction is

presented in dependence on the transverse deflection wa
mn. For small compressive loads �NN a

11, which do not

exceed the global buckling load, the stress resultant �NN a
22 normal to the loading direction is also negative due

to the positive Poisson�s ratios of the core and face sheet material. In the postbuckling range, a different

behavior is observed. Due to the transverse deflection wa
mn, an elongation of the panel with respect to x2-

direction occurs. At a sufficiently large load level, this elongation results in a sign change of the induced
edge load �NN a

22. Especially for negative transverse deflections, this effect can be observed rather close to the

bifurcation point.

In the previous analysis, a zero local imperfection w
� d
pq has been assumed. The effect of a nonvanishing

local imperfection is investigated in Fig. 5. For a more comprehensive analysis of this effect, only the case of

a unique global imperfection amplitude of w
� a
mn ¼ 4:74 mm is considered. This global imperfection corre-

sponds to the only geometry, where a global bifurcation is obtained if no local imperfection is considered.

In Fig. 5a, it can be observed that already small local geometric imperfections have a strong effect on the

global load–deflection behavior. In agreement with the results presented by da Silva and Santos (1998),
Sokolinsky and Frostig (2000) as well as by Wadee and Hunt (1998), this result outlines the fact that the

global buckling mode and the local face wrinkling instability are strongly coupled effects due to nonlinear

deformation coupling rather than being independent features.

Fig. 4. Cylindrical sandwich panel––effect of global imperfection.
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Strong effects of the local geometric imperfection are observed again with respect to the corresponding

face wrinkling amplitude wd
pq (see Fig. 5b). Although for zero initial geometric imperfections, no face

wrinkling occurs for wa
mn 2 ½�15 mm; 39 mm�, a significant, nonvanishing face wrinkling amplitude wd

pq is
observed in this interval, if a local geometric imperfection is present. Owing to a numerical instability of the

employed solution procedure, no stable results were obtained in the vicinity of the the load–deflection curve

without consideration of the local geometric imperfection.

In a final investigation concerning the cylindrical sandwich panel under axial compression, the effect of

the radius of curvature r2 on the deformation and buckling behavior is investigated. In Fig. 6a, the global

load–deflection behavior is presented for four different radii of curvature. In Fig. 6b, the face wrinkling

amplitude wd
pq is presented as a function of the global transverse deflection wa

mn. No local geometric im-

perfection is considered in the underlying analyses. The global imperfection amplitude for each radius of
curvature is chosen in such a way that a global bifurcation is present. It can be observed that the global

buckling load ��NN a
11 increases significantly with a decrease of the radius of curvature r2. In addition, an

increasing asymmetry of the load–deflection curve is observed. Thus, a more distinct snap-through jump

develops for slightly larger imperfections than the considered ones. Due to the increased edge loads for

small radii of curvature (i.e. for r2 ¼ 500 mm and r2 ¼ 1000 mm), a face wrinkling instability is experienced

throughout the considered range of the global transverse deflection wa
mn.

5.3. Spherical sandwich cap under unilateral transverse pressure

In the final example for application of the present model, the postbuckling behavior of a spherical

sandwich cap with a square projection (l1 ¼ l2 ¼ 500 mm) and equal radii of curvature r1 ¼ r2 ¼ r is in-

vestigated. Again, the panel has aluminum face sheets with Ef ¼ 70 GPa, mf ¼ 0:3 and a thickness of tf ¼ 1

mm. The core material behavior is characterized by Gc ¼ 0:269 GPa and Ec ¼ 0:7 GPa. Unless otherwise

Fig. 5. Cylindrical sandwich panel––effect of local imperfection.

Fig. 6. Cylindrical sandwich panel––effect of radius of curvature.
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specified, the core thickness is tc ¼ 50 mm and the radii of curvature are given by r ¼ 500 mm. All edges of
the sandwich cap are assumed to be immovable with respect to the direction normal to the respective edge.

The sandwich cap is loaded by a constant unilateral transverse pressure with q̂qa3 ¼ q̂qd3 6¼ 0 (see Fig. 7). All

subsequent results are related to a deformation mode with m ¼ n ¼ q ¼ 1, and, depending on the con-

sidered geometry, an appropriate choice of p. No initial geometric imperfections are included throughout

the remainder of this study.

In Fig. 8a, the load–deflection behavior for the spherical sandwich cap is presented for five different

values of the core thickness tc. In addition, the dependence of the face wrinkling amplitude wd
pq (Fig. 8b) and

the induced edge loads �NN a
11 and �NN a

22 (Fig. 8c and d) on the transverse deflection wa
mn is investigated. For

comparison, results are added where the face wrinkling instability is suppressed. These results are denoted

by thin lines of the same type as the corresponding results in consideration of the face wrinkling instability

mode.

With respect to the global load–deflection curve in the first plot in Fig. 8, no snap-trough effect is ob-

served. Due to the high-bending stiffness of the sandwich cap under consideration, the global load–deflection

behavior remains stable throughout the considered range. Nevertheless, the curvature characteristics of the

load–deflection curves develop towards a snap-through effect if the core thickness tc decreases. Since a

Fig. 7. Spherical sandwich cap––boundary and loading conditions.

Fig. 8. Spherical sandwich cap––effect of core thickness.
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positive transverse deflection wa
mn of a spherical cap with immovable edges requires a shortening in the

tangential dimensions, compressive average edge loads ��NN a
11 and��NN a

22 develop as the transverse deflection is

increased. If the curvature of the cap in the deformed configuration changes the sign at a sufficiently large

transverse displacement wa
mn, the increase in the level of the compressive edge loads is followed by a decrease

and subsequently––at rather large deflections––by a change of sign into the tensile range.

If the level of the compressive edge loads ��NN a
11 and ��NN a

22 is sufficiently large, face wrinkling with a

nonzero amplitude wd
pq occurs. The only exception is the thin sandwich panel with tc ¼ 10 mm, where the

face wrinkling load is not reached in the present example. Caused by the face wrinkling deformation, the

face sheets become weaker, compared to the analysis, where the face wrinkling instability is suppressed.

Therefore, a significant drop of the induced edge loads ��NN a
11 and ��NN a

22 is observed if face wrinkling is

permitted. The drop is more significant with respect to ��NN a
11 since the buckling mode involving the lowest

strain energy level is unsymmetrical. Note that the solution where the values of p and q are interchanged
and thus the curves for �NN a

11 and �NN a
22 are also exchanged is equivalent to the present solution.

With respect to the global load q̂qa3ð¼ q̂qd3Þ, the effect caused by the occurrence of the face wrinkling in-

stability is less distinct. Nevertheless, it should be noted that for core thickness of tc ¼ 50 mm and a fixed

external load in the range 10 MPa < q̂qa3 < 15 MPa, the global deflection wa
mn increases by �10%, if the face

wrinkling instability is considered.

Finally, the effect of the radius of curvature r on the behavior of the previously analyzed sandwich cap

with a core thickness of tc ¼ 50 mm is investigated. The results are presented in Fig. 9. A decrease of the

radii of curvature r results in a decrease of the overall stiffness of the cap, and thus in a lower global load–
deflection curve (see Fig. 9a). In addition, the deflection amplitudes wa

mn, where the edge loads
�NN a
11 and

�NN a
22

become positive (implying tension), are shifted towards lower levels for large radii of curvature. In this case,

the maximum compressive tangential stress level also decreases (see Fig. 9c and d). Since the face wrinkling

bifurcation load is not exceeded for large radii of curvature, no face wrinkling occurs in these cases.

Nevertheless, for moderate radii of curvature, minor effects are still present.

Fig. 9. Spherical sandwich cap––effect of radius of curvature.
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6. Conclusions

The present study is concerned with the foundation of a comprehensive, geometrically nonlinear theory

for doubly curved sandwich shells accounting for transverse core compressibility. Whereas the Kirchhoff–
Love hypothesis is adopted for the face sheets, a f3; 2g-order power series expansion is employed for the

core displacements. The deformation of the shell is described in terms of the Green–Lagrange strain tensor

in conjunction with the v. K�aarm�aan nonlinear model. Consistent equations of motion and the corresponding

boundary conditions are derived by means of Hamilton�s principle where inertia effects with respect to the

transverse lateral degrees of freedom are included.

The distinguished feature of the present sandwich shell theory consists in its comprehensive formulation

including all major effects such as transverse compressibility of the core, initial geometric imperfections,

inertia effects, large transverse deflections and coupling effects induced by the panel curvature. Based on the
postulated kinematic equations, all interaction effects are addressed in a natural manner. Especially with

respect to the buckling and postbuckling behavior of sandwich panels, interactions of the global buckling

mode and the local face wrinkling instability can be addressed. Since the model accounts for the transverse

compressibility of the core, the face wrinkling instability is accessible during the structural analysis of the

entire sandwich structure under consideration, rather than in a postanalysis based on approximate rela-

tions. Thus, all effects of the geometry and the global loading conditions on the face wrinkling instability

can be analyzed directly. Furthermore, the effect of the face wrinkling instability on the global deformation

and buckling behavior can be determined. In its basic form, the present sandwich shell theory is not res-
tricted to any kind of specific constitutive relation for the core and face sheet material.

The derived shell theory is applied to static buckling and postbuckling analyses of simply supported

rectangular sandwich panels. An analytical solution is derived for this problem in conjunction with or-

thotropic elasticity for both the core and the face sheets. The analytical solution is based on an assumed

transverse displacement field in form of trigonometric functions. For the corresponding tangential dis-

placements, a consistent solution is obtained by the subsequent solution of two systems of partial differ-

ential equations. The remaining unknowns are determined by means of an extended Galerkin procedure.

In three examples, the buckling and postbuckling behavior of flat and curved sandwich panels is in-
vestigated. Both, the overall buckling and the local face wrinkling instability modes are addressed. In

addition, coupling effects are considered. Especially in the analysis of a spherical sandwich cap under

transverse pressure, rather strong effects of the local face wrinkling mode on the induced tangential edge

loads are observed. In addition, an initial geometric imperfection of the face wrinkling type is found to

affect the global buckling behavior of a cylindrical sandwich panel under axial compression. These results

reveal that the local face wrinkling instability is an important feature that intervenes with the global in-

stability of structural sandwich panels. The refined theory of sandwich shells derived in the present study

includes this effect, as well as all interactions of the local face sheet instability in a natural manner. The
theory enables a refined, comprehensive high-precision analysis of structural sandwich panels accounting

for all major effects. Finally, the remarkable computational efficiency of the analytical solution procedure

employed in the present study should be emphasized.
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Appendix A. Shell deformation components

The average and the half difference of the membrane strain components for the top and bottom face

sheet are given by

�cca11 ¼ ua1;1 �
1

r1
ua3 þ

1

2
ðua3;1Þ

2 þ ua3;1u
�a
3;1 þ

1

2
ðud3;1Þ

2 þ ua3;1u
�d
3;1

�cca22 ¼ ua2;2 �
1
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The bending strains for the face sheets read

ja
11 ¼ �ua3;11

ja
22 ¼ �ua3;22

ja
12 ¼ �ua3;12

jd
11 ¼ �ud3;11

jd
22 ¼ �ud3;22

jd
12 ¼ �ud3;12:

The deformation components of the core layer are given by

�ccc33 ¼ � 2
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ðtcÞ2
ðud3Þ

2 þ 4
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Appendix B. Integration constants

The integration constants in the general solution (77) for the Airy stress function are given by
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:

The integration constants in the solution (78) and (79) for the average tangential displacements are given

by
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The integration constants in the expressions (80) and (81) for the half difference of the face sheet tan-

gential displacements are obtained as the solution of the following linear systems:
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with
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Since the results are rather lengthy, the solutions are not presented in explicit form.
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