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Abstract

In the present paper, an advanced geometrically nonlinear shell theory of doubly curved structural sandwich panels
with transversely compressible core is presented. The model is based on the adoption of the Kirchhoff theory for the
face sheets and a second/third order power series expansion for the core displacements. The theory accounts for dy-
namic effects as well as for initial geometric imperfections. In the v. Karman sense, large displacement theory is em-
ployed with respect to the transverse direction while the displacement gradients with respect to the tangential directions
are assumed to be small. The equations of motion are derived by means of Hamilton’s principle and hold valid for all
types of elastic and elastic—plastic material models. The theory is illustrated by an analysis of the elastic buckling and
postbuckling behavior of flat and curved sandwich panels using an extended Galerkin scheme. Owing to the assumed
transverse flexibility of the core, both the global and the local (face wrinkling) instability modes can be addressed.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Structural sandwich panels are important elements in many fields of lightweight construction. The
classical area of sandwich construction is the field of aerospace engineering. Nevertheless, in the past de-
cades there are strong trends to use sandwich panels also in other technological fields such as in naval and
automotive applications or in civil engineering (see e.g. Mouritz et al., 2001). The typical structural
sandwich panel is a layered medium consisting of two high-density high-strength face sheets which are
adhesively bonded to a thick core made from a low-density material. In most cases, the core consists of a
foamed or two-dimensional cellular (honeycomb) material while anisotropic laminae are common as face
sheets. Within the principle of sandwich construction, the face sheets carry the tangential and bending loads
while the core keeps the face sheets at their desired distance and transmits the transverse normal and shear
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Nomenclature

A, Dy, Fy;, Hy; stiffness components
E, G, v isotropic elasticity constants

K, Ly, My;, Ny; stress resultants

l; panel edge lengths

m, n, p, ¢ number of sine half waves for the different stability modes
qi transverse pressure loads

0 reduced stiffness matrix

7 radii of curvature

t layer thicknesses

T kinetic energy

w;, u;  shell mid-plane displacements and initial geometric imperfection
U strain energy

v; three-dimensional shell displacements

w, w  modal amplitude of transverse displacement and initial geometric imperfection
/4 work done by external loads

X spatial vector/local Cartesian coordinate system

Vi Green—Lagrange strain tensor

Vijs Nij» Vij» Ki; shell deformation components

8(...) variation of a quantity

€ permutation symbol

A p wavelength parameters

0 mass density

Ty second Piola—Kirchhoff stress tensor

®;, Q; higher order displacement functions

(...)" average of quantities related to the top and bottom face sheet
(...)" quantities related to the bottom face sheet

(...)° quantities related to the core

(...)* half difference of quantities related to the top and bottom face sheet
(...)' quantities related to the top face sheet

(7))  prescribed quantity

(.7.)  second derivative with respect to time

loads. Advantage of this principle of construction is that plates and shells with a rather high-bending
stiffness characteristics and an extremely low-specific weight are obtained.

Owing to the thick core consisting of a relatively soft material, the deformation and stability behavior of
sandwich structures are essentially different from the corresponding behavior of classical laminated panels
and monolayer structures. Especially in structural stability analyses, a different behavior of sandwich
structures has to be expected. The transverse flexibility of the core yields an additional instability mode,
where buckling of the face sheets into the core region occurs while the overall response of the entire panel
might remain stable. In addition to this face wrinkling instability, the standard global instabilities with
buckling of the entire panel might also be present.

To account for the specific deformation and buckling behavior, a number of specific plate and shell
models for sandwich structures have been developed. Two different types of models can be employed.



J. Hohe, L. Librescu | International Journal of Solids and Structures 40 (2003) 10591088 1061

Effective single layer theories describe the entire sandwich structure in terms of displacement functions
related to one single reference surface. In effective multilayer theories, the individual layers are considered
separately. Compatibility is enforced by appropriate interface compatibility constraints.

The main advantage of effective single layer theories is that the total number of unknown field variables
and thus also the number of boundary conditions is reduced to a minimum. Recent work on effective single
layer sandwich models has been presented by Skvortsov and Bozhevolnaya (2001) as well as by Ferreira
et al. (2000). While the first study is restricted to linear elastic material behavior, the latter paper, which is
concerned with a finite element implementation, accounts for geometrical and material nonlinearities. An
innovative approach to an advanced effective single layer theory for plane sandwich plates has been pre-
sented by Barut et al. (2001). This study is based on weighted average displacement functions, where a
second and third order approximation is used for the transverse and tangential displacement fields, res-
pectively. The main advantage of this geometrically linear model is that it accounts for the transverse
compressibility of the core and satisfies all equilibrium conditions with respect to the transverse stress
components in an exact sense.

Disadvantage of effective single layer models is the loss in accuracy due to the simplified displacement
representation. Furthermore, it was shown in a finite element analysis by Hao et al. (2000) that effective
single layer theories might overestimate the global buckling load of structural sandwich panels. In addition,
effective single layer theories are inappropriate, if local or localized effects, such as the face wrinkling in-
stability mode, become significant. These problems are avoided by effective multilayer models where all
principal layers are treated separately. Early models of this type are the now classical sandwich membrane
models, which assume membrane theory for the face sheets, and pure transverse shear deformation was the
only type of deformation considered for the core (Allen, 1969). A number of more sophisticated multilayer
sandwich models have been developed during the past decade.

Frostig et al. (1992) provided a geometrically linear multilayer model for straight sandwich beams. This
model is based on Kirchhoff theory for the face sheets while no direct displacement assumption is made for
the core. By including the transverse shear stress of the core as an independent unknown field variable, a
mixed stress—displacement theory is formulated. This approach has been extended to singly curved sand-
wich beams by Bozhevolnaya and Frostig (1997) and to plane two-dimensional sandwich plates by Frostig
(1998). An alternative model for sandwich plates including the transverse normal flexibility of the core has
been presented by Lewinski (1991). In his study, the thickness of the core is assumed to be uniform while
nonunique transverse displacements in the interior of the core are permitted. Recent theories accounting for
the transverse compressibility of the core have been provided by Dawe and Yuan (2001) as well as by Pai
and Palazotto (2001). Both of these studies are directed to the analysis of flat sandwich plates in the in-
finitesimal strain regime. The former study is based on a first and second order displacement expansion for
the transverse and tangential displacements, respectively, whereas the latter one uses a second and third
order approximation and also accounts for inertia effects. A general, geometrically nonlinear v. Kdrman-
type theory for doubly curved sandwich shells with transversely incompressible core has been presented by
Hause et al. (1998) and Librescu et al. (1997). This theory accounts for initial geometric imperfections and
for inertia effects. Surveys on recent developments in the theory and modeling of structural sandwich panels
have been provided by Librescu and Hause (2000), Noor et al. (1996) and Vinson (2001).

The necessity to consider the transverse compressibility of the core stems from the fact that this mode of
deformation enables the occurrence of the local (face wrinkling) instability as it has already been noted by
Frostig et al. (1992) as well as by Starlinger and Rammerstorfer (1992). However, most studies in literature
directed to the face wrinkling instability are based on a simplified model where the face sheets are con-
sidered as flat panels on an elastic foundation with the material properties of the core (see e.g. Vinson, 1999;
Zenkert, 1997). On the other hand, these simplified models might yield inaccurate results, if the buckling
load of the global and the local instability are in the same order of magnitude. In this case, coupled buckling
modes with different buckling loads arise, where both the global and the face wrinkling instability are
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involved. Coupled buckling modes have been observed in a numerical study by Sokolinsky and Frostig
(2000) based on the sandwich beam model presented by Frostig et al. (1992). Independently, coupled local
and global buckling modes have been observed by da Silva and Santos (1998) as well as by Wadee and
Hunt (1998). Again, these studies are restricted to straight sandwich beams.

In order to evaluate the buckling strength and the load carrying capacity of sandwich constructions in a
reliable way, a comprehensive structural model that incorporates the transverse normal compressibility
effects as well as the geometrical nonlinearities should be developed. This issue motivates the development
of the present theory. In the present study, the sandwich shell theory presented by Hause et al. (1998)
is extended to sandwich shells with a transversely compressible core. The model adopts the standard
Kirchhoff~-Love hypothesis for the face sheets, and second and third order expansions of the transverse and
tangential displacements for the core, respectively. As a result of the interface compatibility requirements, a
total number of 11 unknown displacement functions are finally involved in the general theory. The model
accounts for large transverse displacements, initial geometric imperfections, as well as for transverse inertia
effects.

The equations of motion and the corresponding boundary conditions for the new sandwich shell model
are derived by means of Hamilton’s principle. Hence, the derived equations hold irrespectively of the
constitutive behavior of the core and the face sheets. In the special case of elastic material behavior of all
principal layers, the number of unknown field variables can be reduced to seven. The model is applied to
static buckling and postbuckling analyses of simply supported flat and curved sandwich panels. An ana-
lytical solution is derived by means of an extended Galerkin scheme. The model is validated by a com-
parison with theoretical-experimental findings available in the literature. In several examples concerning
flat and curved panels, the potential of the new model towards a reliable determination of their load
carrying capacity are demonstrated.

2. General theory
2.1. Basic assumptions

Consider a structural sandwich panel according to Fig. 1. The entire structure consists of two thin face
sheets and a thick core. The two face sheets are assumed to be equal and uniform throughout the entire
sandwich structure. The face sheet thickness is denoted by # while ¢ is the core thickness. In general, the
core thickness is much larger than the face sheet thickness, however, no specific limiting conditions will be
derived from this assumption. Thus, all subsequent considerations hold also for thin cores. Similar to the

top face sheet
core

bottom face sheet

Fig. 1. Structural sandwich panel.
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face sheets, the core is assumed to be uniform throughout the entire panel. The bond between the individual
layers is considered perfect in the present study.

For the analysis, a local Cartesian coordinate system x; is defined, where x; and x, are associated with the
global mid-surface of the panel, while x; defines the downward normal direction. Thus, the global mid-
surface of the panel is employed as the shell reference surface. The sandwich panel is considered doubly
curved. The local radii of the curvature in the local x;—x;- and the x,—x3-planes are denoted by | and 7,
respectively. It is assumed that the radii of curvature are large compared to the core and face sheet
thicknesses i.e. 71, 7, > ¢, #'. Thus the principles of shallow shell theory apply.

Since the tangential stiffness of structural sandwich panels is generally large, it is assumed that the
tangential deformation remains small. Contrary, large deflections might occur in the transverse direction.
During the deformation, the face sheets are assumed incompressible with respect to the transverse direction
while the core, due to its large thickness and weak material, is assumed compressible. Consistent with the
assumption of small tangential and large transverse deflections, only transverse inertia effects are consi-
dered, whereas all tangential and rotatory inertia effects are discarded.

No specific type of material behavior for either the core layer or the face sheets is specified at this point.
However, since within the principle of sandwich construction, the face sheets have to carry the tangential
loads and since their tangential stiffness is in general much larger than the tangential stiffness of the core, the
work done by the tangential stresses of the core will be neglected. This restriction is consistent with the
assumption of the weak core sandwich structures that is adopted for the present study.

2.2. Shell kinematics

As usual in the theory of thin walled structures, the displacement field of the structure is expressed as a
power series with respect to the transverse coordinate x;. In this context, the three principal layers are
treated separately. Due to the low thickness of the face sheets, the standard Kirchhoff assumptions are
applied to the face sheets. Thus, the displacement fields v! and v° for the top and bottom face sheets in the
present problem are given by

, £+ £+ 4
vy :u‘{‘+u‘1’— (x3 +2)u§“, — (X3+ > )u;{, (1)
Ay £+
v =uh + ug — (x3 + T)u§2 — <x3 + 5 )uiz (2)
o= s + 3)
and
b a  d £+, £+ g
Up =uyp —up — | X3 T Uz + | x3 — 3 us (4)
. c+4=0\ £+
vg =u5— ug — <x3 — T)u3‘2 + <x; -3 u§,2 (5)
Ug =ui — ug (6)

where the displacement functions

a __
ul =

(; +u7) (7)

N =
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=5 ) )

represent the average and the half difference of the face sheet mid-surface displacements u' and uP, res-
pectively. It is implicitly understood, that the three-dimensional displacements ¢! and v° depend on all three
components x; of the spatial position vector while the mid-surface displacement functions »! and u® (and
thus u* and u¢) depend solely on the spatial position x, within the shell reference surface. As usual, Latin
indices run over the range 1, 2, 3 while Greek indices run over the range 1, 2. In addition, all displacement
functions depend on time. For convenience, the dependences are not indicated explicitly throughout this
paper.

Owing to the large core thickness ¢, a higher-order expansion has to be used for a proper representation
of the core displacement field. Therefore, the tangential displacements are expressed by a third order power
series expansion with respect to the thickness direction, while a second order expansion is used for the
transverse displacement. Barut et al. (2001) have introduced the naming convention {3, 2}-order theory for
this type of approach. Since the displacement field associated with the core has to satisfy the continuity
requirements at the face sheet interfaces, the displacement components of the core are obtained in the form

c a 3 2)(?3 3 a 4()(3)2 c 4()(3)2 C

vy = Uy — Eug,l — t—cu‘f + t—cX3u3Y1 + ( (IC)Z -1 @1 + 2 (tc)z -1 X3Ql (9)
c a 3 d 2x3 d 3 a 4(X3)2 C 4()63)2 C

Uy =y sy — sty Xl () —1]eh+2 ()2 —1)x, (10)
¢ a2 4(x;)” ¢

03:u3—t—cu§+ < (tc)z —1 ¢3 (11)

where @ and @ are additional displacement functions describing the warping of the core. Similar to the
previously introduced displacement functions u* and u¢, the displacement functions ®¢ and QS depend on
the spatial position x, within the reference surface as well as on time.

In Eq. (11), the second (u$-dependent) term captures the transverse compressibility of the core. This term
is necessary to account for an independent transverse displacement of the top and bottom face sheets. The
last term provides the possibility of an additional transverse warping of the core. Since the power series
expansion (11) of the transverse core displacements is of the second order, a third order expansion of the
form (9) and (10) has to be used for the tangential displacements.

In addition to the load-dependent displacement functions u?, u¢, & and Q¢ in Egs. (1)-(6) and (9)~(11), a
stress-free initial geometric imperfection

0 = 1 + u (12)
o) = g — ug (13)
o o, 2X3 o

3= U3 — ?”g (14)

with respect to the transverse direction is introduced which remains constant during the deformation
process. In comparison to the load-dependent displacements, the geometric imperfections are assumed
small. Contrary to studies concerned with transversely incompressible panels and monolayer structures (see
e.g. Hause et al., 1998), in the present analysis the geometric imperfection of the core has to depend on the
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transverse coordinate x; in order to ensure compatibility of the transverse displacements across the con-
tiguous surfaces between the compressible core and the face sheets. The total displacement field is given by
the sum of the load-dependent displacement field and the initial geometric imperfection. Due to the basic
assumption that only the transverse deflections might become large, only stability modes with respect to
these displacements might occur. Therefore, only imperfections with respect to the transverse direction are
considered.

The deformation of the sandwich shell will be expressed in terms of the Green—Lagrange strain tensor.
Due to the basic assumption that only the transverse load-dependent displacements according to Egs. (3),
(6) and (11) might become large while the tangential deflections as well as the initial geometric imperfection
are assumed to remain small, only the nonlinear expressions with respect to transverse displacements are
kept in the strain-displacement relations while all other nonlinear terms are discarded (Librescu and Chang,
1993). Under the conditions of shallow shell theory, the components of the Green-Lagrange strain tensor
for the individual layers read

1 1 o
Yn =V — 0 +*(U3,1)2 RECESTEN (13)
r 2
1 2 o
Yoo = V22 — — U3 + = (032)" + V32032 (16)
r 2
1 2 o
733 = 033 5 (U33)" + 033033 (17)
Va3 = 5 023 V32 203,21-73,3 203,203,3 203,203,3
Vi3 = 3 U3+ U3 203‘1173‘3 203‘103,3 2”3,103,3
—l(v +v )—|—lv v —Q—lv v —1—15 v (20)
Y12 = 5 W12 2,1 5 V31032 T 503,132 T 5 U3,103,2

where the radii of curvature r, for the individual layers are approximated by the radii of the global mid-
surface. Egs. (15)—(20) constitute a sandwich shell theory of the v. Karman type for infinitesimal strains and
moderately large rotations.

Substituting the displacement components according to Egs. (1)—(6) and (9)—(11) into the nonlinear
kinematic equations (15)—(20) yields the components of the Green—-Lagrange strain tensor for the individual
layers of the sandwich panel. For the top and bottom face sheets, the relations

I, 0N L, 41
y;/} = Vaﬁ + ’Vjﬁ + (X3 + 2 )Ka[f + <X3 + 2 )Kg[f (21)
Y © + l‘f . £© + l‘f
VE/; =Vop — 372/{ + <x3 + T) Kap — <x3 + Y Kg[i (22)
are obtained, where
,, 1/ ,
Vap = 3 (V;;; + V%ﬂ) (23)

37:/3 = % (77;/3 - 3_’:/3) (24)
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are the average and the half difference of the membrane strains 37;/3 and ?gﬁ for the top and bottom face sheet
respectively. The quantities

Ky = % (Kiﬁ + KEI;) (25)

Kap = % (K;ﬁ - KE/S) (26)

are the average and the half difference of the bending strains «}; and ), for the two face sheets. Explicit
expressions for the face sheet membrane and bending strains in terms of the displacement functions u* and
ud are given in Appendix A. Owing to the adoption of the Kirchhoff-Love hypothesis, the transverse strain
components 7', and % for the top and bottom face sheets vanish identically.

Due to the higher-order displacement representation for the core, more complex expressions for the
related components of the Green-Lagrange strain tensor are obtained. The transverse core strain com-
ponents take the form

), () ), ()
Vs =Va txarg + | (%) T4 ns+ | ()" — 2 x3953 (27)

where 73 and k3 are the membrane and the bending strain, respectively, for the core whereas 5, and 9%, are
higher-order strains resulting from the higher-order core displacements. Explicit expressions for the core
strain components are given in Appendix A. Owing to the adoption of the weak core concept, the tangential
strain components )5, for the core are not involved in the subsequent developments and therefore they are
not provided in explicit form.

In conjunction with a specific constitutive equation (which is not adopted so far), and with the equations
of motion to be determined in Section 2.3, it will be shown that the strain components 75;, k3, nj; and ¥¢, are
not independent from each other. In this case, four of the displacement functions of the core can be
eliminated from the system, resulting in the vanishing of the antisymmetric terms in Eq. (27).

2.3. Equations of motion and boundary conditions

The equations of motion have to be consistent with the assumptions made during the determination of
the kinematic relations (23), (24) and (27). Consistent equations of motion as well as the corresponding
boundary conditions can be obtained in a natural manner from Hamilton’s principle

/ (5U — W — 8T)de = 0 (28)
tO

where U, 8W and 8T are the variations of the strain energy, of the work done by the external loads and of
the kinetic energy, respectively, in case of a virtual displacement 8u?, duf, 8&$ and 8Q¢ of the entire
sandwich structure during the time interval [¢°,¢'].

Under the basic assumption that the work done by the tangential stresses of the core is negligible, the
variation of the strain energy is expressed as

- 5 -
A -5 -5 z

where 7;; are the components of the second Piola—Kirchhoff stress tensor, while 4 denotes the area of the
sandwich panel under consideration.
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With respect to the variation 3 of the work done by the external loads, all tangential distributed loads
on the area 4 of the sandwich panel are neglected. Along the external boundary of the sandwich panel, it is
assumed that all prescribed tangential loads are transmitted by the face sheets while all prescribed trans-
verse loads will are carried by the core. A local coordinate system is introduced where x, and x, are the
normal and tangential directions on the external boundary, respectively. Thus, the variation of the work
done by the external loads is given by

SW:/ 750u5 + g5 5u3)dA +/ (/ 7 .dul, dxs +/ 70,005 dx; —|—/ “Bw&; dX3> dx,  (30)
A xt _tt‘_% _% ©

2

where ¢} and g% are the distributed loads on the top and bottom face sheet respectively while 7;; denote the
prescribed stresses along the external boundary and o* = n, .

If all tangential and rotatory inertia effects are discarded, the variation of the kinetic energy of the
sandwich panel is given by

A p £ © Lo
/0 0T de = [) / (/ fz —p U36U3dX3 + /2 —p 038173 dxs +/ —p 036113 dX3>dAdt (31)
/ t A -5 g

2

where p¢ and p' are the mass densities of the core and of the face sheets, respectively, and #; denotes the
transverse acceleration.

In order to determine the nonlinear equations of motion and the corresponding boundary conditions,
the variations 7, y:ﬁ and % are derived from relations (23)—(27) for the corresponding strain components
and substituted into Eq. (29). Subsequently, the stress resultants and stress couples

©

7 A

{ Ny, MY, } /ll‘irlﬂ{l,()g—!— : )}dx3 (32)
l"+§ C f

(NG} = / T;ﬁ{l, (x3—’ ;’ )}dx3 (33)

3{1,)63, ((X3)2 - (t;) >, <(X3)2 - (t;) >x3}dx3 (34)

are introduced to replace the stress components 7;; in Egs. (29)—(31). For convenience, alternative average
and difference stress resultants according to

N\‘n

(s i K =

= () 5
My =3 (- 5) 3
1/; = % < 1/3 a/f) (37)
M = % (s — w3, (38)

are defined for the top and bottom face sheets.
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By substituting Egs. (29)—(31) in conjunction with the two-dimensional stress measures Egs. (32)—(38)
into Hamilton’s principle (28), collecting the coefficients of each of the virtual displacements, and inte-
grating by parts whenever necessary as to relieve the virtual displacements of any differentiation, a single
homogeneous linear equation for the virtual displacements du?, dud, 3&¢ and 30 is obtained. Since the
virtual displacements are independent and arbitrary, the corresponding coeflicients in this homogeneous
equation must vanish independently. Thus, the nonlinear equations of motion

0= Nidl,l +Nf12,2 (39)
0=Nj+ Ny, (40)
1
OZNldl,l"‘ijz,z +t_chc3 (41)
1
0= Nldz,l + Ngz,z + t_°N53 (42)
0= M, (43)
0= M, (44)
0=N; + LLC (45)
13 (t°)2 13
0=N;5, + 6 LS (46)
23 (tc)z 23

- O' 1 - P O' P O, 1 . . 4 .
0= <”;,11 +u§ + r_l)Nldl + 2<“§.12 + ”‘3,12) Np, + (“31722 +u5p + Z)dez + Mldl‘,ll + 2M112,12 + Milz,zz

o o o 1/e+1 o
+ (”(31,11 + “(31,11>N|dl + 2(”(31,12 + ”3.12>N1dz + <”§‘22 + ”§422>N§2 + < < 7 ”(3j - ”(31> (N1c3‘1 + N‘zss‘z)
2 d °d c 2 d °d c ~a f 1 c):a 1 (P
T uy, +usy |Nj; — 7 Uy, +us, |Nys +q5— | m "'Em U —|—§m o5 (47)

o, 1 o, d o, 1 d d d d
0= <”g,11 Ui +r1)N1dl + 2(”?,12 + ”3712>N12 + (”?,22 T Uiy + r2>N22 My 2My g, + My 5y

o a o a o a 2 tC o c

+ (”2,11 + ”(31711>N11 + 2(“2,12 + ”(31‘12>N12 + (“g,zz + ”(31‘22>N22 Tx <§ —u§ — “(31>N33
2 C C C 4 C C 4 C C 8 C C ~ 1 C pd

- ﬁdﬁ <N13,1 +N23,2) - §¢3‘1N13 - ﬁ‘p&zNB - (7)3‘1)3M33 +qg - (mf "’gm )“g (48)
8 .. 4 o . 4 o . 2 [ o . .

0=-— (tc)z D3N3 +§ (“2,1 + “3,1)N13 "‘ﬁ (”(31,2 + ”3,2)N23 TS (5 - “(31 - ”g> (N13.1 +Nz3.2)

8 r ° c 32 crce 16 c c c 1 c:a 4 C e

- ()’ <2 —u — “(31>M33 - () 5Ly "‘W@z <K1341 +K23,2> —|—§m 5= 15™ 25 (49)
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with
o Lo
& =5(a+a) (50)

=5 (3~ a) (s1)

are obtained, where m' and m® are the reduced mass densities for the face sheets and the core, respectively,
integrated with respect to the individual layer thickness. As it has to be expected, due to the basic as-
sumption of infinitesimal tangential strains, the first two equations in this system are identical to the
equilibrium conditions in membrane theory. The third and fourth equations are also a kind of membrane
equations which describe the coupling between the membrane stress resultants of the face sheets and the
transverse shear stresses of the core. The fifth to eighth equations constitute a result of the tangential
deformation components @ and € of the core. Due to the involved kinematic assumptions, these equa-
tions are also linear. The last three equations are related to the transverse direction where large deflections
are involved. Hence, these equations are nonlinear. Since only the transverse inertia effects are considered,
Eqgs. (47)—(49) are the only equations containing inertia terms.

The corresponding nonhomogeneous boundary conditions along the external boundaries of the sand-
wich panel read

=iy or Ni =N, (52)
u' =4 or N*=N° (53)
ud =4 or =N¢ (54)
u! =4 or NS¢ = IV;’, (55)

ug = Ijlg or (u3n +u3n)Na (u3t +1”31)]\[3 (u3n +u%n>Nd (ugt +13(3:‘71‘)]\[‘1 +M:nn +2M;tt

+

1 /44 o PN
(S5 = ity 5 (56)

w =g or (8, + i, )NG4 (8, + i, YN+ (i, )N, (1, + 0 NG+ MG, + 20,
1

2 C A7C Ve
- §¢3Nn3 M:rltt Mn3 (57)
c Fc 2/ od c 48 C pc ATC
;=95 or t—c<§u‘;‘u3>Nn3W¢3Kn3 =N, (58)
W, =d3, or M, =M, (59)
ug{ = ugn or Mjn (60)

Thus, along each edge of the panel, either the tangential displacements or the corresponding stress re-
sultant has to be specified for both face sheets in terms of the average and the difference according to Egs.
(7) and (8) or (35) and (36). In addition, either the rotations with respect to the longitudinal direction of
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each edge or the corresponding stress couples have to be prescribed. With respect to the transverse di-
rection, the displacement functions 3, u§ and @5 can be specified along the panel edges. In the case of
nonvanishing transverse edge displacements, nonlinear boundary conditions apply due to the assumption
of large transverse deflections. Since a total of nine independent boundary conditions have to be satisfied
along each edge of the panel, the governing system is of the 18th order.

Note that so far no specific type of material behavior has been considered. Thus, the nonlinear equations
of motion (39)-(49) as well as the corresponding boundary conditions (52)-(60) hold irrespectively of the
constitutive equations for the core and the face sheets as long as the basic assumptions from Section 2.1 are
satisfied.

2.4. Compatibility equation

The first two equilibrium conditions (39) and (40) are satisfied identically by introduction of an Airy
stress function @ for the average tangential stress resultants Nj; of the top and bottom face sheets. The
stress resultants are obtained as the second partial derivatives

Ny = €y€pP 5 (61)
of the Airy function, where ¢, denotes the permutation symbol.

Introduction of the Airy stress function implies that Egs. (39) and (40) are eliminated from the system.
On the other hand, with the Airy function @, an additional field quantity has been introduced. Therefore,
an additional equation is required. This equation can be obtained in form of a compatibility condition for
the average tangential membrane strain components 7, similar to the compatibility condition for the strain
components in three-dimensional continuum mechanics. For the present sandwich shell theory, the com-
patibility equation takes the form:

1 2 o o
—a —a —a _ a a a a a a a a a
Y122 — 23’12,12 TV = *2”3,22 - 5”3‘11 + (”3‘12) + 2“3,12”3,12 Uz Uzp T U3 U3
a %a d \2 d °d d .d °q . d d °d
— U3 U3 t+ (“3,12) + 2”3,12”3,12 T Uz U3y T Uz U3 pp T Uz U3 9 (62)

Introduction of the Airy stress function @ according to Eq. (61) and replacement of the two—now ob-
solete—equilibrium conditions (39) and (40) by the compatibility equation (62), implies a reduction of the
governing system in the number of equations by one. Similar as in the standard v. Kdrman theory for
shallow monolayer shells, the overall problem can be regarded as an tangential and a bending problem,
which is coupled via the transverse displacements and via the curvature.

3. Special case: orthotropic elasticity

In Section 2, no specific type of material behavior has been considered. Thus, the nonlinear sandwich
shell theory defined by the kinematic equations (1)-(6) and (9)-(11), the equations of motion (41)—(49), the
compatibility equation (62) and the corresponding boundary conditions (52)—(60) is valid for all types of
material behavior. If the theory is specialized to linear elastic behavior, the governing system of equations
can be reduced in the number of unknown displacement functions.

The face sheets are subsequently assumed to consist of orthotropic laminae. If the axes of orthotropy
coincide with the axes x; of the coordinate system and if the lay-up of the face sheets is symmetric with
respect to their individual mid-surfaces, the average face sheet stress resultants Nj; and M, are related
to the average mid-surface strain and curvature components y;; and «;; of the face sheets by
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Nﬁ A5 45 0 32?1
N | = A0 || 7 (63)
Nty (Sym.) Age 27

and
M!al DEI Dgz 0 K?]
M3 | = Dy 0 K |- (64)
M, (Sym.) Dy 2ic,

Similar relations with the same stiffness coefficients Af] and ij relate the half differences Nj; and My of the
face sheet stress resultants to the half differences 75, and xJ; of the face sheet mid- surface strains and

curvature changes. The stiffness components are deﬁned in the usual manner by

-5 N0} £+
{aoi} = [ ( ;- ){1(+ . ) dx; (65)
’ -5 33

where Qf are the components of the reduced stlffness matrix for the face sheets. Explicit express1ons for the
face sheet strain components ¥y, y”ﬁ, Km and x4 up 10 terms of the displacement functions u} , ud and the initial
geometric imperfections are provided in Appendix A.

The core is also assumed to be linearly elastic and orthotropic. Again, the axes of orthotropy are as-
sumed to coincide with the coordinate axes x;. In this case, the stress resultants N5, M3, LS and K3 are
related to the core deformation components 75, x5, n5; and 9% according to Appendix A by the relations

- )2
NS, A33755 + (D§3 - %Agz)’?;@
c\2
N | = | 45,27 + (D — S5 215, (66)
N¢ . .
. AS2955 + (D§5 - 55)2’7?3
M, Pl
M, | = | P2 (D = )2 (67)
M D552k + (Fscs + %D% - 7/1%5)219?3
LS, (Dgz A§3)733 + F3105;
L) = (th4 — 2 A:CM) 2755 + Fy2n5, (68)
LS 02
. (D§5 A§5)2V1% + F552155

4
Dact4 é AZ4) 215, + Hyy 205,

C ‘)4 C C C C (69)
D55 - TA55)2K13 + His20,

(55) - (Pi+t

Kf} ( 505 _|_
which are obtained by substituting the components )¢, of the Green—Lagrange strain tensor into the three-
dimensional constitutive equation for orthotropic elasticity and a subsequent substitution of the obtained

transverse components 73 of the second Piola—Kirchhoff stress tensor into relation (34) for the core stress
resultants. The core stiffness components are given by
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o 2 2
c c c c _ z 2 2 (tc)z 2 (tc)z 2 .
{A(ii)aD(ii)aF(,‘i)vH(ii)} = /. Q?”') L, (x3)7, | (%3)" = 4 | () = 4 (x3)” pdxs i=3,4,5
7

(70)

where no summation with respect to repeated indices in parentheses has to be performed.

The constitutive relations (66)—(69) can be employed to eliminate four unknown displacement functions
from the system: Substituting the core deformation components %3, x5, 7% and ¥, according to Appendix
A into the constitutive equations (66)—(68) yields closed-form expressions for the core stress resultants N,
M, and L,. Substituting the result into the fifth to eighth equation of motion (43)—(46) yields four algebraic
equations for the tangential core displacement functions @ and ). In conjunction with the assumption
that the material behavior is uniform with respect to the core thickness so that the reduced stiffness
components ;) do not depend on the transverse direction x3, the result reads

c ¢ 1 I 4o 1o c, coc ¢ S
‘I)x - Zuga a Eugu(;x - Eugug“ B Eugugv“ N @3143,& B ¢3u3‘“ + g @3(15371 (71)
£ 2 2 o 1 1.
QL =— Pty Dy, + 3 Dius, + 3 D55 + 3 D5 5. (72)

This result can be regarded as a specific simplifying kinematic assumption for the displacement functions
@}, 935, Q] and Q5. Hence, the nonlinear 11-parameter shell theory defined by the kinematic equations (1)-
(6) and (9)—(11), the equations of motion (41)—(49), the compatibility equation (62) and the corresponding
boundary conditions (52)—(60) with the unknown displacement functions u?, u, & and Q¢ can be reduced
to a seven-parameter theory defined by the equations of motion (39)—(42) and (47)—(49) with the unknown
displacement functions »?, u¢ and @;. The reduction in the number of equations and unknown variables is
caused by equilibrium requirements with respect to the stresses in the core of the sandwich panel which do
not permit arbitrary displacements @¢ and Q. Eqs. (71) and (72) in the present form hold only for the case
of orthotropic elasticity where the axes of orthotropy coincide with the axes x; of the coordinate system and
where the material behavior of the core is uniform with respect to the transverse direction x;. Nevertheless,
similar relations can be derived for other types of material behavior.

4. Analytical solution for simply supported sandwich panels
4.1. Transverse displacement functions

The sandwich shell theory derived in Sections 2 and 3 will be applied to buckling and postbuckling
analyses of a simply supported rectangular sandwich panel with edge lengths /; and /, in the x;- and x,-
directions, respectively. Along the panel edges, the transverse displacements »3 and u§ as well as the stress
couples M? and M¢ are assumed to vanish. Furthermore, the tangential shear stress resultants N and N9
as well as the normal stress resultant N9 along the edges vanish. With respect to normal stress resultants N2,
and the corresponding displacement function 3 two different cases are considered: For immovable edges,
the displacement function »? has to vanish whereas the stress resultant N2 vanishes in the case of movable
edges. The displacement function @5 is assumed to vanish throughout the area of the sandwich panel. Thus,
no warping of the core in the transverse direction is considered while warping of the core is permitted with
respect to the tangential directions.

A suitable representation for the transverse displacement functions in buckling and postbuckling
problems is given by
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uy =wh sin(A)x)sin(iix,), A = n;—ln, oy = % (73)

. rad . d _ P qn
u§ = wi, sin(Zox;) sin(ux,), A = T w = T (74)
where m, n, p and ¢ are the number of sine half-waves in the corresponding directions whereas w? and wgq
denote the modal amplitudes of the corresponding transverse displacement function. The amplitudes re-
main unknown at this stage. The numbers of half-waves in the different parts of the solution are inde-
pendent from each other.

For the initial geometric imperfection, a similar assumption

U3 = Wiy sin(A%x)) sin(px,) (75)
ud = Wi sin(A0x; ) sin(udx,) (76)

with the same numbers m, n, p and ¢ is made. On the other hand, the amplitudes w3, and fv;,‘q of the initial
geometric imperfection are independent from their load-dependent counterparts. As it was shown by Seide
(1974), the initial geometric imperfection represented in a similar form as the buckling mode provides the
most critical postbuckling conditions. Caused by the assumption of infinitesimal imperfections, the pre-
scribed amplitudes of the imperfection have to be small compared to the overall dimensions of the sandwich
panel under consideration.

4.2. Consistent solution for the tangential displacements

Similar to the procedure presented in the paper by Hause et al. (1998), a solution for the tangential
displacement functions u? and u¢ can be derived, which is consistent with the assumptions (73)—(76) for the
transverse displacements and the initial geometric imperfection

Substltutlng the transverse displacement functions 4 and u§ as well as the initial geometric imperfections
Wi, and w,,q according to Egs. (73)-(76) into the compatibility condition (62) yields a partial differential
equation for the average membrane strains 7, of the face sheets. Substituting the average membrane strain
components in this equation with the inverted form of the material equations (63), and expressing the
tangential stress resultants Njj; in terms of the Airy stress function @ using Eq. (61) results in an inho-
mogeneous partial differential equation for the Airy stress function.

The general solution of this differential equation reads

® = %Nﬁl () + %N;z(x,)z (08,7 + 208, 48 ) Cr cos(2750) + (45, + 20, ) C cos(24aixa)

+w? Cssin(A2x) sin(plxs) + ((qu)z + 2w§qfvgq> Cycos(22x1) + <(W2q)2 i 2w;q$v§}q> Cs cos(2u5x,)
(77)

where N3 and NZ, are the averages of the prescribed edge loads N? and N2 at x; = constant and
x, = constant, respectively. The integration constants C;—Cs are obtained by substituting the general so-
lution (77) into the differential equation and comparing the coefficients. Explicit expressions are given in
Appendix B.

With the general solution (77) for the Airy stress function @, the average tangential stress resultants Ny,
are obtained from Eq. (61). These expressions are substituted into the first two relations of the constitutive
equation (63). Replacing the average membrane strain components y;; with the explicit expressmns given 1n
Appendix A together with the representations (73)—(76) for the transverse displacements w3, ug, u§ and u3
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yields a system of two coupled inhomogeneous partial differential equations for the average tangential face
sheet displacements u} and 3. The system is solved by

mn

W = ((w;n)2 + 2w’;‘nnvovf‘,,,,)D1x1 + ((w;n)2 + 2ut vovﬁm>D2 sin(2/%x,)
+ ((w;n)Z + 2wjnnv0v§‘nn>D3 sin(245 x1) cos(2xs) + ((w;q)z + zw;’)qfvgq)D4x1

+ ((wgq)Z + Zquﬁ;f}q)Ds sin(Z/I;)lxl) + ((Wﬂq)z + 2w2qfvg,,)D6 sin(2/12x1) cos(2,u3xz)
+ WZnD7 COS(/ljl)Cl) sin(,uzxz) + DgN“)Cl + Dgszxl (78)

s = (08,7 + 208 ) Ev - ((00,)7 20, ) B2 sin(242)
+ ((w:;,,)2 + 2w;nv°v;;m)E3 cos(2/%x;) sin(2ux,) + ((wgq)2 + 2w;qvovf,q)E4xz

+ ((w;q)Z + 2qu£’vgq)E5 sin(2u;x2) + <(W;q)2 + 2w2qfvgq)E6 cos(%ﬁxl) sin(2u2x2)

+ wh E7 sin(i,anxl) COS(,Lli)Cz) + EgNlle + E9N22x2 (79)

mn

where again the integration constants D—Dy and E|—Ey are obtained by substituting the general solution
(78) and (79) into the differential equations and comparing the coefficients. Explicit expressions for the
integration constants are presented in Appendix B.

A consistent solution for the displacements u¢ and ud can be derived from the third and fourth equi-
librium conditions (41) and (42). If the tangential stress resultants Nfﬂ and the core stress resultants N;, in
these relations are substituted by the respective constitutive equations in conjunction with the deformation
components according to Appendix A, a system of two coupled inhomogeneous differential equations is
obtained. The general solution of this system is given by

u = wi, Ay cos(iixy) sin(pixs) + wS, Ay cos(Aoxy ) sin(uixs )
+ ;nnqu + ﬁ/%mwﬁq + wf‘nnfvgq)A3 cos( Ay xy) sin(uix,) sin(ﬂhﬂxl) sin(,usz)

Wd

a d ©a d a

+ (wmnwpq + Wi Wy, +w,,
(Wd

Evgq)A4 sin(Z3,x1) cos(pixs ) cos(A5x1 ) cos(pixz)

+ 'mnqu + fv‘;‘nnwﬁq + w';‘,mvovgq>A5 sin(A2 x;) sin(pix,) cos();,jxl) sin(,usz)
+ (wf‘mwgq + vovﬁ,,wsq + w'j‘nnfvf,q)A6 cos(A5x1) cos(uixs) sin(ingxl) cos(,ugx2) (80)

u§ = w, By sin(22x)) cos(pix,) + w;qu sin(/lsxl) COS(,USXQ)

+ (wfnnwzq + fvamnw;q + w'fmvov;’,q>B3 sin(45x1) cos(pixs) sin();xl) sin(yx,)

+ (wf‘nnwsq + ﬁzﬂmwﬁq + wf‘nnfvgq)& cos( Ay xy) sin(uix,) Cos(ﬂhﬂxl) cos(,usz)

o
+ (wa wdugand 4opd

2w 8, Wity ) By sin(Zg.x1) sin(sira) sin(x,) cos (i)

+ (w"‘ wd fvi‘nnwﬁq + w';‘,lnfvg,,)Bé cos(A2x1) cos(pix) cos(lﬁxl) sin(,ugxz) (81)

mn'" pq

where the integration constants 4; to A¢ and B; to Bg are given in Appendix B.
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With Egs. (73)-(81), a consistent solution for the displacements u* and u¢ of the simply supported

rectangular sandwich panels under consideration is obtained. The solution satisfies all boundary conditions
of the simply supported panel with respect to the transverse displacements and with respect to the stress
couples M2 and M. The boundary conditions with respect to the tangential displacements ¢ and the
tangential stress resultants N2 , N, N9 and N9 are satisfied in an integral average sense along the respective
panel edges. Regarding the equations of motion, the first eight equations (39)—(46) are satisfied identically
since they have been employed for the elimination of the tangential displacement functions @ and €
according to Egs. (71) and (72) as well as for the determination of the consistent expressions (78) (81) for
the face sheet tangential displacements »* and u¢. The only quantities in the solution (73)—~(81) for the
displacements #* and »¢ that remain unknown at this stage are the modal amplitudes w? and wﬁq of the
transverse displacements which have to be determined such that the last three equations of motion (47)—(49)
are satisfied at least in an approximate sense.

4.3. Amplitudes of the transverse displacement functions

The unknown transverse displacement amplitudes are determined by means of an extended Galerkin
scheme (Hause et al., 1998; Palazotto and Linnemann, 1991). Therefore, the solution (73)—(81) for the
displacements of the panel together with the shell strain measures according to Appendix A and the
constitutive equations (63)—(70) are substituted into the variational equation (28). Since the amplitudes of
the transverse displacements are the only unknown quantities, the variations of the displacements and shell
deformation components are expressed in terms of the variations éw? and BWﬁq of the unknown modal
amplitudes. Note that due to the vanishing transverse warping of the core the corresponding variation
vanishes too (duj = 0). Hence, the eleventh equation of motion (49) becomes immaterial.

Neither the amplitudes of the transverse displacements nor their variations depend on the spatial po-
sition. Thus, the integral in Hamilton’s principle can be evaluated. As the result, a single homogeneous
equation is obtained, which depends linearly on the variations éw? and 8wpq of the unknown modal
amplitudes. Since the variations of the transverse displacement amplitudes are arbitrary and independent,
the corresponding coefficients must vanish independently. Thus, a system of two independent cubic
equations for the two unknown displacement amplitudes w;, and }vgq is obtained. In addition, this system
depends on the prescribed average tangential edge loads N}, and N3,, on the prescribed transverse normal
loads g3 and g¢ as well as on on the initial geometric imperfection amplitudes wi, and wd,. Since the
equations are rather lengthy, they are not presented in explicit form. The system is solved numerically by
means of Newton’s method.

5. Numerical examples
5.1. Flat panels under uniaxial in-plane compression

As a first example for the application of the methods derived in Sections 24, the buckling and post-
buckling behavior of a flat sandwich panel under compressive uniaxial in-plane edge loads is considered.
The panel under consideration has a square geometry with /; = /[, = 500 mm and »; = r, = co. The face
sheets are assumed to consist of aluminum with a Young’s modulus of Ef = 70 GPa, a Poisson’s ratio of
vl = 0.3 and a thickness of # = 1 mm. The core material is also isotropic with transverse Young’s and shear
moduli of E¢ = 0.7 GPa and G° = 0.269 GPa, respectively, which is 1% of the corresponding moduli of the
face sheets. Unless otherwise stated, a core thickness of #* = 20 mm is assumed. The sandwich panel is
loaded in a pure uniaxial in-plane mode in the x;-direction with N? # 0 while the second average in-plane



1076 J. Hohe, L. Librescu | International Journal of Solids and Structures 40 (2003) 1059-1088

0 global buckling 0 face wrinkling
- Vinson [23] — p=40
present study --— p=50
-5001 5001 1P
7 T —_p=7
g -1000T £ -10001 ---- Vinson[23] P
T: -1500t TZ: -15001
-20001 2000f A
. 77
-2500 ; ; = : -2500 / ; ; : :
0 10 20 30 40 50 0 10 20 30 40 50
(a) ¢*[mm] (b) 1[mm]

Fig. 2. Flat sandwich panel—buckling load.

stress resultant N%, vanishes. The edges parallel to the xj-axis are movable within the x;—x,-plane. No
transverse loads ¢4 and g¢ are considered in the first example.

As a validation example, the buckling loads for the global instability as well as for the local, face
wrinkling instability are determined as functions of the core thickness . The results for both buckling
modes are presented in Fig. 2. In this figure as well as in all subsequent figures, the standard sign convention
is adopted that tensile loads are positive whereas compressive loads are negative. In order to obtain un-
perturbed results for a separated analysis of both cases, pure local and global buckling modes have been
considered. Hence, in the analysis of the global buckling load, the amplitude wgq of the face wrinkling
instability is set to wgq = 0. Vice-versa, the amplitude w? is set to w? =0 in the analysis of the face
wrinkling load. Needless to say, in the analysis of the buckling bifurcation loads no initial geometric im-
perfections are applied. For sake of comparison, the global and local buckling loads obtained by the ap-
proximate formulae given by Vinson (1999) are added as dotted lines. These approximate formulae are well
verified by experimental results so that the numerical results obtained thereby can also be used for a vali-
dation of the present model.

Concerning the global buckling load, a progressive increase of the compressive load level —N? with an
increase in the core thickness # is observed. A rather good agreement between the results based on the
present model and the ones by the approximate analysis using Vinson’s (1999) formulae is observed for
small to moderate core thicknesses . A deviation develops for large core thicknesses. In this range, the
approximation might be out of range of its validity. It should be noted that for a core thickness # > 50 mm,
the ratio of the core thickness # to the in-plane dimension /; in the present example exceeds 1/10 and thus
might be out of the typical range for standard technological applications. The global buckling load is in all
cases related to the buckling mode with m = n = 1 since this mode yields the lowest overall strain energy.

In contrast to the global buckling load, the face wrinkling load level —N¢, decreases with increasing core
thickness 7°. Furthermore, the buckling mode in this case depends on the core thickness. The number p of
sine half-wave within the loading direction decreases with increasing core thickness due to the decreasing
transverse normal stiffness of the core. On the other hand, a single sine half-wave g = 1 with respect to the
x;-direction normal to the external load Ni, belongs to the lowest buckling mode. In all cases, the lowest
compressive face wrinkling load for the respective core thickness is found to be in good agreement with the
face wrinkling load obtained by Vinson’s (1999) approximate formula. It should be noted that this ap-
proximate formula provides a clear bound on the compressive face wrinkling load levels obtained by the
model used in the present study.

In Fig. 3, the load—deflection behavior in the postbuckling range of the flat sandwich panel is investi-
gated. A constant core thickness of # = 20 mm is assumed. Again, pure buckling modes are considered
where either the global deflection amplitude w?, or the local deflection amplitude wﬂq is considered to have a
nonvanishing value. As in the previous investigation, the global buckling mode is given by m = n = 1 while
a face wrinkling mode with p = 53 and ¢ = 1 proves to correspond to the lowest buckling load for the face
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Fig. 3. Flat sandwich panel—postbuckling behavior.

wrinkling instability. In both cases, different values for the respective geometric imperfection are consi-
dered.

As it has to be expected, a buckling bifurcation is observed in both analyses only in the case of a
geometrically perfect sandwich panel. The presence of an initial geometric imperfection results in a regu-
larization of the load—deflection behavior so that no buckling in the Eulerian sense is present in these cases.
It should be remarked that rather small initial geometric imperfections such as the wrinkling imperfection
amplitude of wd, = 0.1 mm, have a significant effect on the load-deflection behavior especially in the vi-
cinity of the respective bifurcation load level. If the bifurcation load is exceeded, a further increase in the
load carrying capacity of the sandwich panel with both, an increasing amplitude w? of the global buckling
mode, as well as an increasing amplitude wﬂq of the face wrinkling mode is observed.

5.2. Cylindrical shell under axial compression

As a second example including curvature and interaction effects, the axial compression of a cylindrical
sandwich shell with a rectangular projection on a plane is considered. The geometry is similar to that in the
first example, except that a finite radius », = 2000 mm within the x,—x;-plane is considered. Again the in-
plane dimensions of the panel are /; = I, = 500 mm so that r,/l, =4 and r;/l; = co. The core and face
sheet thicknesses are 1 = 20 mm and ¢ = 1 mm, respectively. The material properties of the core and face
sheet material are given by G° = 0.269 GPa, E° = 0.7 GPa, Ef = 70 GPa and »f = 0.3, respectively. The
panel is loaded in a pure axial compression mode with Ni, # 0 while all transverse distributed loads g3 and
@5 are assumed to be zero. In contrast to the example regarding the flat sandwich panel, the edges parallel to
the external loading direction (x;-direction) are considered to be immovable with respect to the x,-direction.
Thus, a nonvanishing tangential stress resultant N3, will in general be present in this example. In contrast to
the previous analyses, in the remainder of this paper the global buckling mode and the face wrinkling
instability will be considered in a coupled form.

In Fig. 4, the load—deflection behavior of the cylindrical shell is presented at different levels of the initial
geometric imperfection amplitude wi,. A buckling mode with m = n = ¢ = 1 and p = 53 is considered. This
mode corresponds to the lowest strain energy level in the postbuckling range. In Fig. 4, the local imper-
fection amplitude fvgq is assumed to be zero. In contrast to the case of the flat sandwich panel, due to the
panel curvature, a bifurcatiorll in the global load—deflection diagram is obtained for a nonzero initial
geometric imperfection with w, ~ 4.74 mm. If for this geometric case the compressive load —N? is further
increased, an unsymmetrical load—deflection behavior is observed. For slightly larger initial geometric
imperfections than the value required for the occurrence of the bifurcation, a slight snap-through jump is
observed due to the asymmetry of the load—deflection behavior in the postbuckling range. Again, strong
effects of the initial geometric imperfection can be observed.
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Fig. 4. Cylindrical sandwich panel—effect of global imperfection.

In the case of a global imperfection with w#, = 4.74 mm, no face wrinkling instability is experienced,
when the bifurcation load is reached. If the compressive load level is further increased, a second bifurcation
occurs when the face Wrinkling buckling load is reached. From this load level onwards, a nonvanishing
local displacement w¢ = 0 is present (see Fig. 4b). The occurrence of this second bifurcation and the
subsequent development of the local displacement w essentially depends on the level of the global geo-
metric imperfection wi,. Since this imperfection has a strong effect on the global load—deflection behavior
(see Fig. 4a), it strongly affects the overall load level Ni, and thus also the occurrence and intensity of the
local face wrinkling instability.

In Fig. 4c, the dependence of the induced stress resultant N2, normal to the loading (x;-) direction is
presented in dependence on the transverse deflection w?, . For small compressive loads N, which do not
exceed the global buckling load, the stress resultant N%, normal to the loading direction is also negative due
to the positive Poisson’s ratios of the core and face sheet material. In the postbuckling range, a different
behavior is observed. Due to the transverse deflection w? , an elongation of the panel with respect to x,-
direction occurs. At a sufficiently large load level, this elongation results in a sign change of the induced
edge load N%,. Especially for negative transverse deflections, this effect can be observed rather close to the
bifurcation point.

In the previous analysis, a zero local imperfection vovf,q has been assumed. The effect of a nonvanishing
local imperfection is investigated in Fig. 5. For a more comprehensive analysis of this effect, only the case of
a unique global imperfection amplitude of w4, = 4.74 mm is considered. This global imperfection corre-
sponds to the only geometry, where a global bifurcation is obtained if no local imperfection is considered.
In Fig. 5a, it can be observed that already small local geometric imperfections have a strong effect on the
global load—deflection behavior. In agreement with the results presented by da Silva and Santos (1998),
Sokolinsky and Frostig (2000) as well as by Wadee and Hunt (1998), this result outlines the fact that the
global buckling mode and the local face wrinkling instability are strongly coupled effects due to nonlinear
deformation coupling rather than being independent features.
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Fig. 5. Cylindrical sandwich panel—effect of local imperfection.

Strong effects of the local geometric imperfection are observed again with respect to the corresponding
face wrinkling amplitude wﬁq (see Fig. 5b). Although for zero initial geometric imperfections, no face

wrinkling occurs for w* € [—15 mm, 39 mm)], a significant, nonvanishing face wrinkling amplitude wgq is
observed in this interval, if a local geometric imperfection is present. Owing to a numerical instability of the
employed solution procedure, no stable results were obtained in the vicinity of the the load—deflection curve
without consideration of the local geometric imperfection.

In a final investigation concerning the cylindrical sandwich panel under axial compression, the effect of
the radius of curvature r, on the deformation and buckling behavior is investigated. In Fig. 6a, the global
load—deflection behavior is presented for four different radii of curvature. In Fig. 6b, the face wrinkling
amplitude w9, is presented as a function of the global transverse deflection w?,. No local geometric im-
perfection is considered in the underlying analyses. The global imperfection amplitude for each radius of
curvature is chosen in such a way that a global bifurcation is present. It can be observed that the global
buckling load —N? increases significantly with a decrease of the radius of curvature r,. In addition, an
increasing asymmetry of the load—deflection curve is observed. Thus, a more distinct snap-through jump
develops for slightly larger imperfections than the considered ones. Due to the increased edge loads for
small radii of curvature (i.e. for r, = 500 mm and r, = 1000 mm), a face wrinkling instability is experienced
throughout the considered range of the global transverse deflection w3 .

5.3. Spherical sandwich cap under unilateral transverse pressure

In the final example for application of the present model, the postbuckling behavior of a spherical
sandwich cap with a square projection (/; = [, = 500 mm) and equal radii of curvature r; = r, = r is in-
vestigated. Again, the panel has aluminum face sheets with Ef = 70 GPa, v/ = 0.3 and a thickness of ¢/ = 1
mm. The core material behavior is characterized by G° = 0.269 GPa and E° = 0.7 GPa. Unless otherwise
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Fig. 6. Cylindrical sandwich panel—effect of radius of curvature.
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Fig. 7. Spherical sandwich cap—boundary and loading conditions.

specified, the core thickness is #* = 50 mm and the radii of curvature are given by » = 500 mm. All edges of
the sandwich cap are assumed to be immovable with respect to the direction normal to the respective edge.
The sandwich cap is loaded by a constant unilateral transverse pressure with g3 = g$ # 0 (see Fig. 7). All
subsequent results are related to a deformation mode with m = n = ¢ = 1, and, depending on the con-
sidered geometry, an appropriate choice of p. No initial geometric imperfections are included throughout
the remainder of this study.

In Fig. 8a, the load—deflection behavior for the spherical sandwich cap is presented for five different
values of the core thickness #°. In addition, the dependence of the face wrinkling amplitude w;q (Fig. 8b) and
the induced edge loads Ni| and N3, (Fig. 8c and d) on the transverse deflection w?  is investigated. For
comparison, results are added where the face wrinkling instability is suppressed. These results are denoted
by thin lines of the same type as the corresponding results in consideration of the face wrinkling instability
mode.

With respect to the global load—deflection curve in the first plot in Fig. 8, no snap-trough effect is ob-
served. Due to the high-bending stiffness of the sandwich cap under consideration, the global load—deflection
behavior remains stable throughout the considered range. Nevertheless, the curvature characteristics of the
load—deflection curves develop towards a snap-through effect if the core thickness ¢ decreases. Since a
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Fig. 8. Spherical sandwich cap—effect of core thickness.
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positive transverse deflection w?  of a spherical cap with immovable edges requires a shortening in the
tangential dimensions, compressive average edge loads —N? and —N%, develop as the transverse deflection is
increased. If the curvature of the cap in the deformed configuration changes the sign at a sufficiently large
transverse displacement w? , the increase in the level of the compressive edge loads is followed by a decrease
and subsequently—at rather large deflections—by a change of sign into the tensile range.

If the level of the compressive edge loads —N¥ and —N%, is sufficiently large, face wrinkling with a
nonzero amplitude wﬁq occurs. The only exception is the thin sandwich panel with # = 10 mm, where the
face wrinkling load is not reached in the present example. Caused by the face wrinkling deformation, the
face sheets become weaker, compared to the analysis, where the face wrinkling instability is suppressed.
Therefore, a significant drop of the induced edge loads —N? and —NZ is observed if face wrinkling is
permitted. The drop is more significant with respect to —N?, since the buckling mode involving the lowest
strain energy level is unsymmetrical. Note that the solution where the values of p and ¢ are interchanged
and thus the curves for Ni, and N3, are also exchanged is equivalent to the present solution.

With respect to the global load gi(= ¢3), the effect caused by the occurrence of the face wrinkling in-
stability is less distinct. Nevertheless, it should be noted that for core thickness of # = 50 mm and a fixed
external load in the range 10 MPa < ¢ < 15 MPa, the global deflection w? increases by ~10%, if the face
wrinkling instability is considered.

Finally, the effect of the radius of curvature r on the behavior of the previously analyzed sandwich cap
with a core thickness of #* = 50 mm is investigated. The results are presented in Fig. 9. A decrease of the
radii of curvature r results in a decrease of the overall stiffness of the cap, and thus in a lower global load—
deflection curve (see Fig. 9a). In addition, the deflection amplitudes w? , where the edge loads N? and N3,
become positive (implying tension), are shifted towards lower levels for large radii of curvature. In this case,
the maximum compressive tangential stress level also decreases (see Fig. 9¢c and d). Since the face wrinkling
bifurcation load is not exceeded for large radii of curvature, no face wrinkling occurs in these cases.

Nevertheless, for moderate radii of curvature, minor effects are still present.
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Fig. 9. Spherical sandwich cap—effect of radius of curvature.
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6. Conclusions

The present study is concerned with the foundation of a comprehensive, geometrically nonlinear theory
for doubly curved sandwich shells accounting for transverse core compressibility. Whereas the Kirchhoff—
Love hypothesis is adopted for the face sheets, a {3,2}-order power series expansion is employed for the
core displacements. The deformation of the shell is described in terms of the Green—-Lagrange strain tensor
in conjunction with the v. Karman nonlinear model. Consistent equations of motion and the corresponding
boundary conditions are derived by means of Hamilton’s principle where inertia effects with respect to the
transverse lateral degrees of freedom are included.

The distinguished feature of the present sandwich shell theory consists in its comprehensive formulation
including all major effects such as transverse compressibility of the core, initial geometric imperfections,
inertia effects, large transverse deflections and coupling effects induced by the panel curvature. Based on the
postulated kinematic equations, all interaction effects are addressed in a natural manner. Especially with
respect to the buckling and postbuckling behavior of sandwich panels, interactions of the global buckling
mode and the local face wrinkling instability can be addressed. Since the model accounts for the transverse
compressibility of the core, the face wrinkling instability is accessible during the structural analysis of the
entire sandwich structure under consideration, rather than in a postanalysis based on approximate rela-
tions. Thus, all effects of the geometry and the global loading conditions on the face wrinkling instability
can be analyzed directly. Furthermore, the effect of the face wrinkling instability on the global deformation
and buckling behavior can be determined. In its basic form, the present sandwich shell theory is not res-
tricted to any kind of specific constitutive relation for the core and face sheet material.

The derived shell theory is applied to static buckling and postbuckling analyses of simply supported
rectangular sandwich panels. An analytical solution is derived for this problem in conjunction with or-
thotropic elasticity for both the core and the face sheets. The analytical solution is based on an assumed
transverse displacement field in form of trigonometric functions. For the corresponding tangential dis-
placements, a consistent solution is obtained by the subsequent solution of two systems of partial differ-
ential equations. The remaining unknowns are determined by means of an extended Galerkin procedure.

In three examples, the buckling and postbuckling behavior of flat and curved sandwich panels is in-
vestigated. Both, the overall buckling and the local face wrinkling instability modes are addressed. In
addition, coupling effects are considered. Especially in the analysis of a spherical sandwich cap under
transverse pressure, rather strong effects of the local face wrinkling mode on the induced tangential edge
loads are observed. In addition, an initial geometric imperfection of the face wrinkling type is found to
affect the global buckling behavior of a cylindrical sandwich panel under axial compression. These results
reveal that the local face wrinkling instability is an important feature that intervenes with the global in-
stability of structural sandwich panels. The refined theory of sandwich shells derived in the present study
includes this effect, as well as all interactions of the local face sheet instability in a natural manner. The
theory enables a refined, comprehensive high-precision analysis of structural sandwich panels accounting
for all major effects. Finally, the remarkable computational efficiency of the analytical solution procedure
employed in the present study should be emphasized.
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Appendix A. Shell deformation components
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The average and the half difference of the membrane strain components for the top and bottom face

sheet are given by
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Appendix B. Integration constants

The integration constants in the general solution (77) for the Airy stress function are given by
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The integration constants in the solution (78) and (79) for the average tangential displacements are given
by
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The integration constants in the expressions (80) and (81) for the half difference of the face sheet tan-
gential displacements are obtained as the solution of the following linear systems:
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Since the results are rather lengthy, the solutions are not presented in explicit form.
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